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PROBLEM SOLVING AND REASONING

James G. Greeno
University of Pittsburgh

Herbert A. Simon

Carnegie-Mellon University

ABSTRACT

This long chapter reviews research on problem solving and reasoning;

the intended use is as text material for advanced students and others

needing a moderately detailed introduction to the topics. The

orientation is primarily psychological, with significant attention

given to results from artificial intelligence. Major theoretical concepts,

such as problem representation, the problem space, strategic knowledge,

and problem-solving search, are developed in detail; and major empirical

methods such as thinking-aloud protocols, problem-behavior graphs, and

use of error patterns and latencies, are described and illustrated.

Sections of the chapter include: Problems with well specified goals

and procedures, Problems of design and arrangement, Inductive problem

solving, and Evaluation of deductive arguments.

This is a draft of a chapter to appear in R. C. Atkinson, R. Herrnstein,
G. Lindzey, and R. D. Luce (Eds.), Stevens' Handbook of Experimental
Psychology, (Revised Edition). New York: John Wiley & Sons.



PROBLEM SOLVING AND REASONING

James G. Greeno and Herbert A. Simon

I. Introduction

Important advances have been achieved in the 1960's and 1970's in the
scientific study of thinking. These advances have resulted from new
methods for formulating models of the cognitive processes and structures
underlying performance in complex tasks, and the development of
experimental methods to test such models. A major accomplishment has been
the discovery of general forms of cognitive activity and knowledge that
underlie human problem solving and reasoning. This chapter describes a
survey of the major theoretical concepts and principles that have been
developed, presents some of the evidence that supports these principles,
and discusses the empirical and theoretical methods that are used in this
domain of scientific study. In this introductory section, we give an
overview of the major concepts that will be described in detail in the
chapter, and we discuss relations between these concepts and issues that
have been investigated previously in experimental psychology. We also
discuss some general methodological issues.

I.A. Overview of Concepts

The concepts that have been developed can be discussed conveniently in
two groups: hypotheses about the form of cognitive action, and hypotheses
about the form of cognitive representation. The hypotheses about cognitive
action extend analyses of behavior that were developed in general behavior
theory by investigators such as Thorndike (e.g., 1923), Tolman (e.g.,
1928); Skinner (e.g., 1938), and Hull (e.g., 1943). The hypotheses about
representation extend analyses that were developed by Gestalt psychologists
such as Kohler (1929), Duncker (1935/1945), Katona (1940), and Wertheimer
(1945/1959). One of the important insights reached in the analysis of
problem solving is that hypotheses about these issues of action and
representation are complementary, and both are necessary components of a
theory of human thought. We will discuss the two groups of concepts in
turn in this overview; however, in the sections that follow, hypotheses
about action and representation will be integrally related in models of
performance in specific tasks.

I.A.I. Form of Cognitive Action. Hypotheses about cognitive action
can be conside- at two levels: basic action knowledge and strategic
knowledge.

A consensus has developed that human knowledge underlying cognitive
action can be represented in the form of production rules, a formalism
introduced by Post (1943) to represent reasoning in mathematics, and
adapted for application to psychology by Newell and Simon (1972). Models
in which knowledge for action is represented as a set of production rules
are referred to as production systems.

Any theory of performance must include hypotheses about the process of
choice whereby individuals select the actions that they perform. A
production system provides a framework for expressing hypotheses about this
process in specific detail. A production rule (or, more simply, a
production) consists of a condition and an action. The condition specifies
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a pattern of information that may or may not be present in the situation.
The action specifies something that can be performed. The general form of
action based on productions is simply: if the condition is true, perform
the action.

In a production system, the basic problem of choice among actions is
solved by specifying conditions that lead to the selection of each action
that can be performed. The condition of each production rule is a pattern
of information that the system can recognize. These patterns include
features of the external problem situation (the stimulus). They also
include information that is generated internally by the problem solver and
held in short-term memory. The internal information includes goals that
are set during problem solving. It also can include information in memory,
such as past attempts to achieve specific goals. Thus, production rules,
which represent basic action knowledge, consist of associations between
patterns of information and actions. An action is chosen when the
individual has a goal with which the action is associated and the external
stimulus situation as well as information in memory include features
associated with the action.

An important component of a model of cognitive activity is its
representation of strategic knowledge. This includes processes for setting
goals and adopting general plans or methods in working on a problem.
Analyses of general problem-solving strategies have been developed to
simulate performance in novel problem situations where the individual has
little or no experience. One major analysis is based on a process of
means-ends analysis (e.g., Newell & Simon, 1972) in which goals are
compared with current states, and actions are selected to reduce
differences that are identified. General strategies also include processes
for setting subgoals when the current goal cannot be achieved directly.
Analyses of strategic knowledge in specific domains also have been
developed to simulate performance by problem solvers who have received
special training (e.g., Greeno, 1978). Strategic knowledge of experienced
problem solvers includes global plans for solving classes of problems and
knowledge of subgoals that are useful in classes of problem situations.

The general ideas used in formulating hypotheses about cognitive
activity in production systems can be regarded as building upon, rather
than negating, the concepts developed and used in general behavior theory,
particularly the formulations of Tolman, and the later forms of Hull's
theory. Early expositions of behavior theory emphasized the direct
relations between stimuli and responses, with rather deliberate inattention
to intervening events in the brain. Thorndike (1923) emphasized that
actions are chosen because of their associations or bonds with stimulus
conditions. In Skinner's (1938) formulation, actions are performed under
the "control" of external stimulus features. Tolman (1928), on the other
hand, strongly recognized the need to include internal goals and
information stored in memory in the determination of response selection.
Tolman used such terms as "means-end expectation" and "means-end readiness"
in referring to these factors. In Hull's theory, concepts of covert
anticipatory responses (1930) and incentive motivation (1952) were used.
In discussions of problem solving, Maltzman (1955) and Staats (1966)
postulated stimulus-response units at differing levels of generality, and
the idea of knowledge about action.at different levels is used in more
recent formulations of strategic knowledge, especially in hypotheses about
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planning.

The concept of a production rule is consistent with these
formulations; and behavior theory, even in the terms used by Watson and
Skinner, can be expressed as a system of productions (Millenson, 1967).
However, as production rules are used in contemporary information
processing theory, they make much more explicit than did earlier theories
the motivational states and memories of prior experiences that combine with
external stimulus conditions to determine choice of a response. Modern
production system models of problem solving and similar cognitive processes
may be viewed as a (lengthy) extrapolation of Tolman's research program
that symmetrizes the roles of external environment (stimulus) and inner
environment (motivational states and memory contents) as determinants of
response; and that makes far more explicit than earlier formulations were
able to exactly how those two sources of information control responses. We
characterize the extrapolation as "lengthy" because not only does it
postulate that many of the essential components of the stimulus lie in the
brain, but also that a large part of the response to a production (or all
of it) may be internal -- consisting, for example, of a change in content
of short-term or long-term memory. We do not want to understimate the
magnitude of the shift in viewpoint, but we do wish to emphasize that it is
a continuous development from the experimental psychology that preceded it,
and not a new start. That is presumably what Miller, Galanter, and Pribram
(1960) also meant when they described the new approach (half jokingly) as
"subjective behaviorism." ("Subjective," of course, referred to the minds
of the subjects, not to the scientific methods of the investigators.)

One major difference between recent hypotheses about cognitive
activity and those developed in general behavior theory, in addition to the
shift to internal events in behavior, is that recent formulations are much
more definite and specific. Models have been formulated as production
systems with sufficient specificity that they can be expressed as computer
programs that simulate actual performance of solving specific problems. To
do this, it is not sufficient to postulate the existence of
stimulus-response associations and goals, even at differing levels of
generality; it is necessary also to formulate hypotheses about just what
the stimuli, responses, and goals are. Hypotheses about specific
structures of knowledge about actions and goals in the problem domain have
to be constructed, and processes have to be designed to recognize specific
patterns of information in the task situation that are relevant to solving

problems. Hypotheses about strategic knowledge have to specify the
conditions in which goals will be set and plans will be adopted.

Again, we prefer to emphasize continuity, rather than discontinuity in
this development. Nothing in the new fine-grained me:hanisms is
antithetical to the grosser level of description of the earlier theories.
In fact, important progress has been made in explaining in detail (and
sometimes quantitatively) the rich body of experimental data provided
within the behavioral scheme (e.g., Simon & Feigenbaum, 1964; Gregg &
Simon, 1967). But the impact from achieving this higher level of
resolution in our theoretical models and their predictions has led to
significantly greater understanding of the psychological processes involved
in problem solving and reasoning.
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I.A.2. Hypotheses about Representation. Hypotheses about cognitive
representations of problems are formulated using the idea of a problem
space. The problem space includes an individual's representation of the
objects in the problem situation, the goal of the problem, and the actions
that can be performed and strategies that can be used in working on the
problem. It also includes knowledge of constraints in the problem
situation: restrictions on what can be done, as well as limits on the ways
in which objects or features of objects can be combined.

In developing hypotheses about representation of problems, much use
has been made of concepts developed in analyses of language understanding,
including networks of propositions (Quillian, 1968; Kintsch, 1974;
Anderson, 1976), procedural representation of concepts (Feigenbaum, 1963;
Hunt, Matin & Stone, 1966; Winograd, 1972), and schemata (Schank, 1972;
Hayes & Simon, 1974; Norman & Rumelhart, 1975; Schank & Abelson, 1978).
Representations of problems differ from those usually postulated for
understanding of language because they are constrained to provide
information needed for solving the problem. Hypotheses about knowledge
used in representing problems include processes for recognizing features
that are relevant to actions, strategies, and constraints of the problem
domain, and for constructing representations with information that can be
used in the cognitive processes of problem solving.

Hypotheses about problem representations have begun to address some of
the issues of understanding principles and structure in problem solving
that were emphasized by some educational, developmental, and Gestalt
psychologists (e.g., Judd, 1908; Kohler, 1929; Brownell, 1935; Duncker,
1935/1945; Katona, 1940; Piaget, 1941/1952; Wertheimer, 1945/1959). As
with hypotheses about cognitive activity, current hypotheses about
representation are more definite and specific than those that characterized
previous discussions. The hypotheses specify cognitive processes and
structures that actually construct representations from the texts or other
presentations of problem information (e.g., Hayes & Simon, 1974; Larkin,
McDermott, Simon & Simon, 1978; Riley, Greeao & Heller, 1983). Hypotheses

about understanding of problem structure and general principles include
cognitive structures hat specify just what is understood about the problem,
and how the understanding is achieved (Greeno, 1983; Greeno, Riley &

Gelman, in press). Another characteristic of recent discussions is that
hypotheses about understanding are coordinated with hypotheses about
cognitive activity in problem solving, so the significance of
understanding, as well as the specific information that it provides for the
problem solver, is made clear.

l.B. Methodology

The use of computer programming languages as formal systems for
psychological theory has been a major factor in the development of the
concepts and empirical results that we describe in this chapter. The
standards that are now common for adequacy of a hypothesis include its
expression in a computer program that simulates actual solution of problems
- that is, a description of the problem can be given as input for the
program, and the program carries out steps that result in the problem's
being solved. To meet this standard, the theorist must develop specific
hypotheses about many aspects of the psychological process that were
previously left unspecified. Representations of specific stimulus

'i
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situations must be postulated, including relations among cues that are
assumed to provide important information for the subject. Knowledge
structures and processes required for comprehension of stimulus situations
must be specified, leading to specific forms of information that are
assumed to constitute the subject's cognitive representations of the
stimuli. Assumptions about knowledge in the subject's memory are specified
in detail, including associative structures of information and production
rules in which specific actions are associated with specific stimulus

conditions. The actions include overt responses as well as internal
actions such as setting goals and choosing plans.

To provide evidence for these more detailed hypotheses, more detailed

data are required. A major source of these data has been the increased use
of thinking-aloud protocols. Protocols provide a more detailed description
of behavior, enabling inferences about intermediate steps such as subgoals
and attention to specific aspects of the problem. Protocol statements are
not treated as introspective descriptions of psychological processes, but
rather as overt reports of mental activity that the subject would be aware
of in any case, but usually would not announce. Indeed, subjects are

instructed to avoid trying to explain their behavior, but only to give
raports of things they notice or think about as they are working (cf.
Ericsson & Simon, 1980). Statements in protocols provide data to be

explained by models that constitute hypotheses about the process, and thus
protocol statements have the same status as other detailed observations,
such as specific patterns of errors by individuals on sets of problems,
latencies of response when information for problems is presented
sequentially, or eye fixations during processing of problem infornation.

I.C. Chapter Contents

The remainder of this chapter is organized in five sections. We have
organized the findings and conclusions that we present on the basis of
general properties of the cognitive tasks that have been studied.

Section II deals wit1h problems in which a definite goal or solution

procedure is specified. Analyses of problems of this kind have been

especially important in the development of concepts and methodology, and we
have devoted more space to Section II than we have to the other sections.
In Section II we develop general theoretical ideas, such as the problem

space and heuristic search, that are used without detailed development in
later sections. Section II also includes discussion of methodology and
empirical evidence in more detail than later sections. Conclusions
presented in other sections are based on evidence similar to that discussed
in Section II, although space did not permit us to describe the empirical
findings as fully in those later discussions.

Examples of problems specified by goals or procedures include logic
exercises, where the goal is to derive a specified expression, and
arithmetic problems in which a child must perform the steps of subtraction.
These problems present a situation and require performance of a sequienice (f
actions that transform the situation. A limited set of problem-solving

operators are permitted, restricting the actions that can be performed.
The subject's task can be viewed as a search in a space of action
sequences, where there are many possible sequences of actions, only a few
of which lead to the problem goal and conform to the constraints of the
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situation.

In Section III we consider problems of design and arrangement, where
goals are specified in terms of general criteria, rather than as defiiLte
states or procedures. A familiar example is an anagran problem, where a
set of letters is to be arranged into a word. Problems of design differ
from the transformation problems discussed in Set-tioa II itat

constraints are imposed mainly on the solution state, rather than )n Lhe
actions that can be used in achieving the state. Thus, design problems can
he ilerstood as problems of search ill i space that contains nany pose ih)e
arrangements of the problem materials, only one or a few of which satisfy
the problem criterion.

In Sections IV and V we consider t-iks that ar- oFte-i called reas,) ilg
rather than problem solving. Section IV takes up proble-ms of inluction,
and Section V deals with deductive syllogisms. Analyses of processes
Lawolved in these tasks, r,±veal th-t ey ihare basic cliaricteristics of the
processes involved in tasks ordinarily considered as problem solving,
although they also have some distinc ive > at:ires. In it|ucto, pl.,
the goal is to tientify the structure f a set of materials; the problems
require search in a space that contains many possible structural
descriptions or rules, most of which are inc~osisteit with some features of
the problem information. In tasks frequently used to study deductive
reasoning, problem solver, judge whether argueiits that ire paes, nt i are
valid; the process involves an ittempt to lerive the conclusion from the
premises, a search for a sequence of inferential actions just as in
problems of transformation.

In Section VI we present some conclusions.

(!

i
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II. Well Specified Problems

In this section we discuss problem solving in relatively well
structured situations. Prtrst, we consider problems i which a definite
goal is specified. The problem solver is given an initial situation or
problem state, a set of operators that can be used to change the situation,
and a goal state. The task is to find a sequence of actions, restricted to
use of the permitted operators, that results in the goal state. In Sectioq
II.A we discuss goal-directed problems for which the problem solver has
little or no specific knowledge or experience, so that the problem solving
depends on using general problem-solving knowledge sometimes called "weak
methods." In Section t1.B. --e discuss problems of the sane structire for
which individuals have recL ( special training or experience, thus
acquiring specific knowled of the problem domain. Section II.C
discusses problems in whiz procedure is specified, rather than a goal,
and correct performance de ds *n the subject's knowledge of tie
procedure. In Section II discuss representation of problems,
including understanding ir, tions for novel problems and representing
dord problems in domains fo- which the individual has received special
t rataing.

II.A. General Knowledge for Novel Problems with Specific Goals

A substantial body of research has been conducted on solution of
well-str!ictured puzzle-like problems that require relatively little
lomain-specific knowledge. By hindsight, the research strategy of focusing
on such problems has some advantages, even beyond the obvious ones of
naking the experiments simpler and the data easier to interpret. In
difficult problem domains requiring special knowledge, we are likely to
learn from our subjects principally what they know and how they have
organized and represented their knowledge in memory, because much of an
individual's success depends on whether he or she knows the specific
priaciples and procedures of the domain.

In experiments in domains that are relatively free of specialized
content and where subjects are relatively naive, we may still find
significant differences in behavior from subject to subject and from domain
to domain, but we also are likely to discover some of the commonalities of

behavior that characterize problem solving, at least by novices, over a
wide range of domains. We also are likely to detect the Flexible,
general-purpose techniques that people fall back on when they do not have
special knowledge or methods adapted specifically to the task at hand.
These fall-back techniques, often called "weak methods," are the only
weapons that are available for attacking truly novel problems. Hence,
understanding them should contribute also to an understanding of discovery
processes and creative problem solving.

An important general concept in the analysis of problem solving is the
problem space, consisling of the problem solver's representation of the
materials of the pr-b'em along with knowledge that is relevant to the task.
The problem space includes a representation of the problem goal and
operators that can be used; these may be specified in the problem
description or supplied by the problem solver's knowledge. The operators
include actions that can be performed and conditions that are required for
performance of the actions. The problem space also includes the problem

.1!
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solver's strategic knowledge, whichi nay ticlude -rtthotk prp~iioul/ acqliired
through experience in the domain, as well as general problem-sol;ing

me thods.

In this section we discuss tasks in which definire goils are s,,: ,.
Ln the problem instructions. Subjects solving these problems are usually
not experienced in the tasks. The problem-solving )p.lritlrs )irne
specified in the problem instructions, rather than being known in advance
by the problem solvers, and the problem solvers must rly on oe al
problem-solving strategies, that is, on weak methods. The principal
methods of this kind employ a generil problem-solving heurist, ,illed
means-ends analysis, a process that involves comparing the current st~t-
with the goal of the problem or a subgoal that h.? problem s.)ler i3 -rying
to achieve, and selecting an operAtor that can reduce dibferenc.s betwec
the current state and the goal.

Research has been conducted on several tasks of this general kind.
Here we discuss two tasks: proof discovery exercises in logi- 'e l " 

-

Simon, 1972), and water-jar problems (Atwood & Polson, 1q76). The studies
that we discuss illustrate use of two empirical ;eth,ds. eP&2 I nd
Simon's study of logic proof discovery used detailed analvses )f
thinking-aloud protocols obtained from a few subjects, wi' fi:_- fr)
larger group of subjects to check the representativeness of some gener l
features of performance. Atwood and Polson's study )F w4iter j 1) r
used frequencies of responses that iccurred during problem solving to
evaluate a modl of problem solving expressod La qpiantitative f)".

II.A.1. Discovering Proofs in Logic. Discovering proofs For
mathematical theorems of one kind or another is a task all )f :is iavp faced
frequently in school and a few of us in our professiontl lives. ')ne T)hmin
In which theorem proving has been studie: extensively is elementary
symbolic logic (Moore & Anderson, 1954; Newell, Shaw, & Simon, 1]7;
Newell & Simon, 1972). The propositional calculus is defined by -nlv twto
rules of inference and a dozen axioms. In the studi-s that .iscils, -h,
task was presented as a syntactic game of transforming strings of
uninterpreted symbols according to rules given as symbolic f)rmuliq. 71i
ensured that subjects could not draw readily on such commonsense knoleige
as they may have had of the laws of reasoning. (The studies of syl lgisti"

reasoning that we discuss in Section V directly address the question of
subjectA knowledge of formal logical rules.)

Deduction and Induction in Problem Solving. At the outset we must
deal with one common misconception about proof-finding tasks. Ligi" is th.i
science of deductive reasoning from premises to conclusions. A proof is a
sequence of expressions starting 4ith axioms (or .-,rviously proved
expressions) and terminating with the desired theorem; each step of the
proof must satisfy the laws if deduction. Its validity can be checked,
step by step, by applying those laws systematically.

Finding the proof of a theorem is another atter. We have a known
starting point -- the axioms -- and a known goal -- the theorem -- but in
most mathematical domains there is no systematic rule for constructing a
path from axioms to theorem. That path must be discovered, and the usual
method for discovering it is ro search for i,, the amount of trial and
error required depending on how selectively the search is carried out.

I-'
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Hence, while a proof is an example of a logical deduction, the
problem-solving activity involved in searching for a proof is inductive
search, as is most interesting problem solving whatever the task domain may
be.

The Moore-Anderson Logic Problems. In the logic task designed by
Moore and Anderson (1954), subjects were not told that they were
discovering proofs in symbolic logic, but were simply instructed to
"recode" certain strings of synnbols Into other, specified, strings, using a
given set of transformation rules. The rules were displayed on a sheet of
paper, which was available to the subjects at all times. A typical rule
(there were twelve, some with subparts) was:

A V B --- B V A,
which was to be interpreted: The expression A -v B may be transformed into
the expression B V A, where A and B are variables for which any parts of
an expression can be substituted. The connectives in such expressions were
referred to by the experimenter as "wedge," "dot," "horseshoe," and
"tilde," instead of being given their usual interpretations in logic as
'or, 'and," "implies," and "not." Subjects were run on this task by
Carpenter, Moore, Snyder, and Lysansky (1961) at Yale, and by Newell and
Simon (1972) at Carnegie Institute of Technology.

Several kinds of data can be obtained in problem-solving tasks of this
kind. The times to solution can be recorded, as well as the times for
making each successive transformation of an expression. Numbers of correct
solutions can be counted, and errors can be classified and analysed.

Thinking-aloud Protocols. The richest data, however, are obtained by
instructing subjects to think aloud while solving the problem. The verbal
protocols provide a higher temporal density of data than is usually
obtained by other methods (except, perhaps, from records of eye movements).
Typically, subjects speak at an average rate of about two words per second,
although there are of course substantial differences among subjects and
from one part of a task to another.

If thinking-aloud data are to be used correctly and effectively to
help understand subjects' cognitive processes, answers are needed to

several questions, especially: (1) which processes, or what parts of the
processes, are verbalized, and (2) to what extent does verbalization alter
or in any way affect the problem-solving process itself. A recent
extensive review of relevant literature (Ericsson & Simon, 1980) supports
three general conclusions. First, subjects mainly verbalize a subset ;f
the symbols that pass through STM as the task is being performed. The
verbalizations will be more complete (i.e., will give a fuller record of
successive STh contents) if the problem is being solved in terms of verbal

symbols than if the STM contents have to be translated from some other
modality (i.e., visual images). Second, the process of recognizing some
familiar visual or auditory stimulus does not produce any intermediate
symbols in STM that can be reported; only the result of the recognition
process can be reported. Third, in most problem-solving tasks, the
cognitive processes are the same in the thinking-aloud as in the silent
condition. Moreover, in general, the speed of task performance is neither
increased nor decreased by the instructions to think aloud.

I
1- . -_
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The protocols under discussion here are those produced by subjects

concurrently with their performing the cognitive task. In using
retrospective protocols as data, additional factors must be taken into
consideration. First, only such information can be reported
retrospectively as has been transfered to LTM and retained there. Second,
aess the instructions call for recall of specific events, subjects may
engage, in a variety of ways, in active reconstruction of the event or
process that is being probed. Hence, retrospective protocols must be
interpreted in the light of what we know about the laws of memory and
forgetting (Bartlett, 1Q32; Nisbett & Wilson, 1977).

The most detailed analysis of problem-solving protocols calls for
reconstructing from them the successive cognitive states of subjects as
they work toward the problem solution. "Cognitive st-ate" means what the
subject knows or has found out about the problem up to the time of the
protocol fragment being examined, along with information, such as subgoals
and evaluations, that has been generated by the subject from decisions and
judgments. Typically, in tasks like the logic theorem proving task,
subjects verbalize the symbolic expressions they produce and those they are
actively considering, the operators they are applying to transform
expressions, and often the goals they are trying to attain (e.g., the final
theorem or expressions they think would bring them closer to it) (Newell &

Simon, 1972). As they proceed, subjects often evaluate their progress and
the suitability of steps they have just taken.

From such protocol statements we can usually reconstruct the problem

space in which a subject is operating. Recall that a problem space
includes a subject's representation of the problem situation, the goal,
problem-solving operators, constraints, and strategic knowledge. More
Formally, a problem space is defined by a set of symbol structures,
corresponding to the cognitive states that can be generated as the subject
works on the task, and a set of cognitive operators, information processes

that produce new cognitive states from existing ones. The problem-solving
efforts of a subject may be described as searches through a problem space,

from one cognitive state to another, until the solution (a particular
cognitive state) is found or the search is abandoned.

Given a description of the problem space, inferred from a protocol, a

search tree, called a Problem Behavior Graph (PBG), can be constructed to
represent the course of the subject's search. The size and shape of the
PBG will disclose the extent of the subject's skill and knowledge and the
consequent selectivity he is able to achieve. Given the PBG, in turn, the

experimenter can undertake to construct a simulation program for a computer
which, if given the same problem, would generate the same PBG as that

generated by the subject.

The accuracy of fit of the simulation program to the strategy that
guides a subject's behavior can be judged by comparing the program's trace
step by step with the problem-solving protocol. Formal methods for judging
goodness of fit in a statistical sense are not available, but departures of
trace from protocol are easy to detect. These discrepancies then form the
basis for modifying the simulation program to fit the protocol better.
Except for the fact that the data we are dealing with here are not
numerical, the process of fitting a computer program to protocol data is
identical in principle with the process of fitting a system of differential

'1 ,_ _ _ _ _ _
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equations to time series data.

A basic problem space for the logic task is one in which the subject's
cognitive state is defined by the logic expressions thus far derived from
the initial given expression, and by the legal operators for generating new
expressions from these. Since the protocol normally discloses both what
operators are being applied and what expressions are obtained from the
application, there will be a great deal of redundancy in the available
information to test the consistency of the interpretation. Many protocols
will allow a richer problem space to be inferred -- one in which the
subject notes similarities and differences among logic expressions, and
chooses his or her next step in terms of them. When the subject's choice
of actions is also guided by goals and subgoals, these are also added to
the description of the problem space.

Solution Processes. No single strategy, or simulation program based
on such a strategy, can be expected to describe the problem-solving
behavior of all subjects. However, the behavior of a great many subjects
in task domains like logic theorem proving reveals a small number of common
mechanisms as central features of the problem-solving process. One of the
most important of these is means-ends analysis, first introduced into the
problem-solving literature by Duncker (1935/1945). Means-ends analysis

requires a problem space rich enough to contain not only logic expressions
and operators, but also symbol structures that describe differences between
pairs of logic expressions and other symbol structures that describe goals.
Thus, a subject operating in such a problem space might say, "I have an
expression whose main connective is a horseshoe, and my goal expressior has
a wedge. Let me look for an operator that will change horseshoe to wedge."

In broadest outline, means-ends analysis can be described by the
following set of productions, where S is the present state or expression, G
is the goal expression, D is a difference between two expressions, and 0 is
an operator:

If the goal is to remove difference D between S and G
--- find a relevant operator 0

and set the goal of applying it.
If the goal is to apply 0 to S,

and condition C for applying 0 is unsatisfied
-~set the goal of satisfying C by modifying S.

If the goal is to apply 0 to S ---) make application.

If there is a difference D between S and G

- set the goal of removing it.
If there is no difference between S and G

--) halt and report problem solved.

While the production system displayed here does not describe all the
details of the control of search, it provides the main outlines of
means-edds analysis. The system seeks to detect a difference between the
present position in the problem space and the goal position. Given such a
difference, it searches memory for an operator that is relevant for
removing the difference. Having found an operator, it attempts to apply
it. If all the conditions for operator application are not satisfied, it
expresses the discrepancy as a new difference and establishes the goal of
reducing it. The scheme operates recursively, and as soon as one
difference has been removed, it looks for another. An important component

II
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of the strategy not represented in the productions is the use of memory to

store goals that have been tried, so the problem solver can avoid looping

through the same cycle of repeated unsuccessful attempts of a goal that
cannot be achieved.

A clear distinction can be made between the general strategy of

means-ends analysis and domain-specific knowledge that is required for the
strategy to be used in solving any particular problem. The general
strategy is represented in the productions shown above. To use these
productions, a problem solver must be able to represent the state S and the
goal G, and identify differences between them. In the domain of logic,
states correspond to expressions, and differences involve different
letters, different connectives, and different arrangements of letters ai:!

connectives. The problem solver also must know what operators can be used,
what conditions permit each operator to be applied, and what kinds of
difference are removed by use of each operator. In logic, the operators
are the rules for transforming expressions. The conditions are patterns
that are specified in the rules, and the relevant differences for a rule

can be inferred by comparing the two sides of the rule. For example,
A- B - A requires a pattern in which two subexpressions are connected by

a dot, and has the effect of removing a letter or a sibepression, as well
as removing the dot. AcB <-- AvB does not remove or add any letters,
it can be applied to a pattern with a horseshoe to change the horseshoe to
a wedge or vice versa, and it changes the sign of one of the letters or
subexpressions.

The general strategy of means-ends analysis has been implemented in a

program called the General Problem Solver (GPS) and shown to be sufficient

for providing solutions in over a dozen problem domains, including puzzles

such as the Tower of Hanoi and tasks such as integral calculus, given
appropriate representations of the states, operators, and connections
between operators and differences in the specific domains (Ernst & Newell,
1969).

In the experiments conducted with the logic task, subjects were not

experienced in the domain. The operators were presented as part of the
task instructions, and it is reasonable to expect that subjects had to rely
mainly on general problem-solving strategies, rather than having
domain-specific knowledge available for the task. If this is correct, and

if the subjects' general problem-solving strategies have the properties of
GPS, then their performance in the logic task should be similar to that of
GPS when it is run on the task. The results were quite positive.

Kinds of Evidence. The hypothesis was evaluated at three levels.
First, specific protocols were examined, comparing the statements made by

subjects with the steps in solutions by specific versions of GPS. For

these simulations, GPS was varied by supplying it with differing priorities
of differences. Second, a set of protocols (all those obtained by Newell

and Simon on one moderately difficult problem) were coded and each protocol
was translated into a Problem-Behavior Graph, showing a succession of

cognitive states that was inferred from the statements and problem-solving
operators to account for the transitions between states. The
state-to-state transitions were classified, and the categories were

compared with categories of activity that are performed by GPS. Third,
some summary statistics were compiled for Newell and Simon's subjects and
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for the subjects run at Yale, involving the frequencies of occurrence of
several intermediate steps in solutions of the problems. These statistics
were compared to detect any gross abnormalities in Newell and Simon's data,
compared to a larger group of subjects who solved the problem with pencil

and paper without the requirement of thinking aloud.

As Table I illustrates, individual protocols can often be simulated in

great detal, but of course there will be differences among individuals in

their problem solving methods, hence in the production systems that would

describe them. For purposes of psychological theory, we are often less

interested in the details of a particular simulation (except as a very
strong test of the theory) than we are in the structure of a program that
simulates the main mechanisms revealed in a whole set of protocols. The

problem of averaging over groups of subjects can also be handled formally
by comparing the statistics of behavior of a program with the statistics of

the human subjects as a group. In this section, we examine the processes

for comparing programs in detail 4ith individual protocols, and in Section

II.A.2 we discuss the statistical approach.

Table I here

Individual Protocols. Newell and Simon presented several protocols in

which activities of subjects reflect processes like those in GPS. An

illustration is in Table 1. A segment of one subject's protocol is shown,

along with a trace of a version of GPS working on the same problem. In the

protocol and the GPS trace, LO refers to the goal expression and Li refers
to the initial expression of the problem. L2, L3, and so on refer to

additional expressions that are generated by the problem solver by applying

operators to Li and other previously generated expressions.
The operators that are referred to in this segment are

R6: A,= f n AVB

R7: A V(B ) (AV B) "(AV C)
A • (BV C) -- >(A • B) V (A • C)

The protocol segment in Table 1 began near the end of the first minute of
work on the problem, and occupied a little more than three minutes.

In this segment, both the subject and GPS had the goal of deleting the

letter R from the initial expression. Both of the problem solvers

considered rule R7 as a possible means of accomplishing this. R7 cannot be
applied to Li because its connectives are wrong, so a subgoal was set to

change the connective of Li. This led to use of R6, but the two
occurrences of R in the transformed expression have opposite signs.
Attempts were made to change one of the signs, but this returns the

horseshoe to the subexpression. At this point the subject, and the
specific version of GPS that produced this run, were both unable to
continue on this line of work.

This protocol and GPS trace are similar to an impressive degree of

detail. However, the important finding is not the fact that the subject

and GPS tried to use the same rules in the same sequence. The precise
sequence of rules used by GPS can be tailored fairly arbitrarily, and
indeed other versions of GPS would not try to use R6 and R7 in thisI

I!
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Table I

Comparison of GPS with Protocol Data

(from Neell & Simon, 1972)

GPS Trace Subject Protocol

LO:- (nvQ"P)
Li: (R = ^P)"(%R Q)

Goal 1: Transform LI into LO

Goal 2: Delete R. fro LI

Goal 2: (reinstated) Now I'm looking for a way to get rid
Goal 9: Apply R7 to Li of the horseshoe inside the two

Goal 10: Change connective to V brackets that appear on the left
in left(L1) and right sides of the equation.

Goal 11: Apply R6 to left(LI) And I don't see it.
Produce L-: Yeh, if you apply R6 to both sides

("SR V )(-R of the equatio.n,
From there I'm going to see if I can

apply R7.
(E writes L2: ( -R V %?).(R V Q)

Goal 12: Apply R7 to L4 I can almost apply R7, but one R needs
Goal 13: Change connectiv to V a tilde. So I'll have to look for

in right(L4) another rule.
Goal 14: Apply R6 to I'm going to see if I can change that R to

right(L4) a tilde R. As a matter of fact, 1 should
Produce LS: have used R6 on only the left hand side

(,-R V QP).(, V Q) of the equation. So use R6, but only on
the left hand side.

(E writes L3: ('\R V .p).( - _Q))

Gc,al 15: Apply R7 to L5 Now I'll apply R7 as it is expressed.

Goal Ib: Change sign of Both..excuse me, excuse me, it can 't be
left(right(L.)) done because of the horseshoe So...

Goa- 17: Apply R6 to now I'm looking...scanning the rules
right(L5) here for a second, and seeing if T

Produce L6: can change the R to a %R in the second
(%R V %P)-(%R Q) equation, but I don't see any way of

doing it.
(Sigh) I'm just sort of lost for a second.

Goal 18: Apply R7 to L6
Goal 19: Change connective to

V in right(L6)
reject

Goal 16: (reinstated)

nothing more
Coal 13: (reinstated)

nothing more
Goal 10: (reinstated)

nothing more

A.J
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situation. The important finding involves the general character of the

subject's performance, involving goals related to differences between the
current expression and the problem goal and subgoals to make operators
applicable. The protocol provides several clear illustrations of
activities that are consistent with the hypothesis of a GPS-like

problem-solving process.

Problem Behavior Graphs. It is important to consider whether

activities like those in Table 1 are typical of problem solvers, or are
relatively rare. Newell and Simon addressed this question by examining
Problem Behavior Graphs (PBGs) obtained from the protocols of several
subjects working on a moderately difficult problem.

Figure I here

An example of a PBG is shown in Figure 1. The numbers prefixed 1y B
oa the left correspond to lines of the transcribed protocol. This PBG was
obtained from the protocol that includes the segment given in Table 1,
which corresponds to the section of the PBG starting at B0 and ending just

before B29. Information included in the cognitive states is in the
rectangles; operators are shown on the lines that connect the rectangles.
Information in the rectangles refers to new expressions that were written
(e.g., L2 or L3, indicated in the protocol), or differences between a
current expression and the goal that the subject was considering. For
example, "Ag" refers to a difference in grouping of terms and "Ac l&r"
refers to the difference between connectives in the given expression and
the goal of applying R7 (horseshoes in both the left and right sides of Li

ind wedges or dots needed to apply R7).

Most of the operators refer to the rules; we mentioned R6 and R7

earlier. When a rule is applied successfully, there is an arrowhead on the
line between rectangles. When a rule is shown with a line without an
arrowhead, there was a goal to apply the rule but it did not succeed.

Double lines indicate repetitions of attempts to apply rules.

The relation between the protocol and the PBG can be illustrated by
examining the first few lines of Table I and the PBG starting at BI0. "get
LO" refers to consideration of the goal; this led to recognition of the
difference in grouping between LO and Li (" Ag"). Then the subject

attempted to apply R7; this led to identifying the differences in
connectives noted in the third rectangle ("Ag l&r"). Then an attempt to
apply R6 was successful, resulting in line L2. The sutbject attempted to
apply R7 a second time and noticed that there was a difference in the signs
of the R terms in the two subexpressions (" AsR"). From time to time, the
subject "backed up" to an earlier state, as when he decided that R6 should
be applied only to the left side of Li. This is indicated by a vertical
line from the cognitive state that the subject returned to. R6 was applied
to the left subexpression of Li, giving line L3; then R7 was attempted
again, but the subject noticed the horseshoe, an incorrect connective for
R7. The subject returned to the goal of changing the sign of R in

expression L2, but the search for an appropriate rule (indicated by R in a

box) failed to produce anything helpful.

I
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Table 2 here

1BGs were co:piled for seven subjects, working on the problem in Table
1. The transitions between states were classified, and the categories were
compared with activities that occur when GPS works on a problem. The

categories, and their frequencies in the seven PBGs, are shown in Table 2.

Most of the categories shown in the table correspond to GPS-like

activities. Those that do not are marked with asterisks, accounting for
about 18% of the transitions in the PBGs. The most interesting
discrepancies involved choice of operators to avoid undesireable
-.-)sequencei ("avoid consequences"), and noticing features of the problem
not related to the present goal ("noticing"). Simulation of these would
require significant additions to GPS's problem-solving processes. Tle
remaining discrepancies involve activities that relate to the requirement

of giving protocols ("command experimenter" and "review") or where there
was insufficient information in the protocol to determine whether the
transition was related to one of the GPS-like categories ("other," except

for those in the subcategory "noticing").

Aggregate Frequencies. The data in Table 2 were obtained from a small
group of subjects who were required to think aloud as they worked. It is
possible that the subjects were atypical, or that the requirement of
thinking aloud caused major distortions in the way in which problem solving
occurred.

Newell and Simon compared some summary statistics from their subjects

with data obtained by Carpenter el al (1961) at Yale University. The
number of subjects run at Yale was larger (64), and they solved the
problens with p. ncil and paper, without thinking aloud. If the data for
the Carnegie subjects did not differ from the Yale data in sigLfLcant
ways, then there is evidence that the general characteristics of their
problem solving were not caused by individual idiosyncracies, or by the
requirement of giving protocols while working on the problems.

The summary statistics involved a division of expressions into
categories. Each category consists of an expression from the problem, such
as the left sabexpression of expression Li, and other expressions that can
be formed from it by making minor transformations. Minor transformations
for this purpose are those involving rules that change the order of terms,
the connectives, or the signs, but do not change the terms in an
expression. The data for each group of subjects are the proportions of all
the expressions written that fall into the categories. The categories of

expressions are listed in the left column. For example, expressions in

Class Li are those that can be formed by applying one of the minor
transformations to expression Ll shown in Table 1. The categories that
were used are not arbitrary; they are motivated by the observation that
differences. that require changing the terms in expressions are more
difficult to remove, and thus require higher priority in solving the
problems. (Also see the discussion of planning, which follows.)
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Table 2

Total Frequencies of Occurrences of GPS-Like Mechanisms

in Seven Protocols (From Newell & Simon, 1972 ,

Cat egory Frequency

Means-end analysis 258
towards goal object 89

operator applicability 151
overcome difficulty 143
further specify 5
resolve uncertainty 3

*avoid consequences 18
avoid difficulty 17
prepare desired result 1

Working forward 41
systematic scan and evaluate 37
input form similarity 3
do so-.ething different I

Working backward 2
output form similarity 2

Repeated application 230
after subgoal 93

to overcome difficulty 58
to further specify 11
to resolve uncertainty 2
to avoid consequences 12
to correct error 8

to process interruption 2

im 'ementa tion 97
for ;lan 84

*to czomand experimenter 13

*rev ie'w 40

Other 27
*no tic ins 6
*repeated application 11
*new avplication 10

Total 558

_________I "____I____________
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Table 3 here

Data for the problem in Table I are s'own in Table 3. The igree-ent
between the two groups of subjects was not exact, but the comparison does
not indicate major differences in problem-solving processes. A statistical
test shows that the difference between the category frequencies in tle two
groups was not significant (X2 (4) = 8.86; p ' .05).*1

Table 4 here

Data are shown in Table 4 for a somewhat 'iirier pr)olea, [n 4hi-h the
given epression was Li = (PvQ) " (Q:R), and the goal was L = PV(Q. R).
Again, the agreement is not exact, but the difference Ls not large eiough
to reject the 'hynothesis that the two sets of responses were produced by a
single underlying process ( (N"(3) = 15.27, p ' .05).

Planning Strategy. A second strategy of broad applicability and wide

use that was identified in the logic protocols is planning. The idea
underlying the planning strategy is that some gaps !wee the LiiLal
situation and the go , Are more Important and potentially harder to remove
than others. If the problem space is simplified by abstracting t!he problem
expressions, removing from them the less important features, the simplified
expressions will define a much smaller space through which the search can
be conducted more expeditiously. If a solution can be found to the
simplified problem, then the omitted details .-an be restored and this
solution used as a guide for searching in the original problem space.

To use the planning strategy subjects ,must not only be able to apply
means-ends analysis, but must have enough knowledge of the problem space to
be able to distinguish "important" from "unimportant" differences between
expressions. For example, in the domain of logic, subjects gradually learn
that it is easier to change the connectives in logic expressions than to
change the letters. The planning space is then a space in which
expressions like (R z % P) -(R = Q) are replaced by (RP)(RQ). The
sequences of proof steps in the original space, R P, -R "- Q,
".Q = R, %Q = ,P, Q V --P, -( Q P), becomes the simpler sequence in
the planning space, RP, RQ, PQ. The second step of the search in the

planning space corresponds to two separate steps in the original space, and
the third step in the planning space corresponds to three sreps in the
original space -- a reduction of one-half in the length of the derivation,
and of a much larger factor in the amount of search required to find it.

Evidence for planning was obtained in protocols like the following,
obtained in a problem with four given expres*ions: LI = PVQ;
L2 oR ,Q; L3 - S; L4 - R-= -S; and the goal: LO - PVT. Rule R9,
mentioned in the protocol, is A -- AvX, a rule for aiding a term to an

*1. The independence assumption of the chi-square test w.as not met in
these data, since several expressions were written by each subject.
However, this would generally make it more likely that a significant
difference would be obtained, so the conclusion seems warranted.

.. . .. ...- - . . . ..-
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Table 3

Proportions of Expressions

Class of Carnegie Yale

Expressions (78 expressions) (519 expressions)

Li .37 .29

left of Li .14 .16

right of LI .12 .22

LU .24 .17

other .13 .16

( i I . .
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Table 4

Proportions of Expressions

Class of Carnegie Yale

Expressions (97 expressions) (487 expressions)

Li .33 .26

extended LI .02 .04

left of LI .14 IV

right of LI .14 15

(RV P) .13 .07

(P V Q) (PV R) .03 .01

LO .03 .01

Rule 9 .1b ib

other .01 .07

I.

| I I
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expression.

Well, one possibilit! right of f the bat is whe3n -)a have jisit
a PVT like that the last ting.- youi --iLht use is th at R9. 1 can
get everything down to a P and just adid a \,T. So that's the )ne
thing to 'Keen in raind.
.;ell, maybe right off tie bat, I'm kinda jumping into it, I maybe
can work everything down to jus-t i ?; I lurino if that's possiLble.
But I think it is, bet-ause I stce thiat steps 2 and 4 -ire somewhat
similar; if I can cancel out the R's, that wouild leaive me withI
just an S and Q;
andi iF h ave just ain S ;ad Q, I c2an eventually get step) 3, get th-e
S' s to cancel -out and end up withi ast i

ndif I end up withi just ai Q, naybeth 'wiL:11nu; o
you see, all the way down the line. I duinno, it looks to,) good to
be true, but I thinik I ;~et- ilr:ai.

IT.A. 2. Water-Jar Problems. We now discuss man nAlysis of problem
solving In another t ask. Water-jar problems, saidextkenfs tv'el ')V
TLuchins (1942), are transformation problems with definite goals,ivoin
a set of thre,? j-irs of diffarent capacities. In the forni studied4 by Atwood
and Polson (\1976), the largest jar is Fuill Li t-~iitl il staaan thte
gYoal is to h.ave that water divided equally between two jars. Fo3r example,
the capacities may be Jar A: 8 oz.; Jar B: 5 oz.; Jair C: 3 o :. Thien n
the iiitial state, Jar A contains 8 oz. of wat-or, and Jars B and C iare
empty. The goal is to hiave 4 oz. of water earnh In Tairs A and .3. 7The
prohlemu-solving operators involve pouring water from a source jar into a
target jar. Water can be poured into the: tirget jar uiiLL ic is; F ill, iF
there is einugh water in the source jar; water cin be poured out of the
source jar util it is empty, if there L.s eniough romin. the targ et jar.
Intermediate actions are not possible.

In the water-jar task, dfencsbetw4een any state ml thle rle
qfoal consis-t of liscrepancies between the contents .)' the thre.e jars in1
that state aInd thte contents that are specif ied in t gao;l. Atwood an
Polson. hypothiesized~ that subjects would judge thir pr)gress by -,)mbLiing
the discrepanrcies, forminig an overall evaluation function for the current
state, and would try to select moves that would improve the- value of this
t anct iori. Thev assuimed th~lt thae -viluat-")n of a s3pecifiC state i Was

ez 1 C 1 ,i-GA I . (B) - G B) I
where Ci(A) a4~ Ci(B) are the a43ctual contents of Jair A anid Tar 3 in state
i, And CG(A) and G(B) are the contents of Jar A and Jar 3 iai thie goal state.
(The crontenits of Jar C are relundant with those of A and R.)

Atwood and Polson formulated a process model , ba sed oni the means-,ends
itrategy )f attempting to reduce the eviluation to z, ro). Thiey assumed, thiat
at each -Rove suibjects consider various pouring operations that could ')e
made Legally, ind try to choose onie that all Uma'c- the ev-1luat ion fn n
smaller, or at least not increase its current value by more than a
threshold amount.*'- Atwood and Polsoti -lso mnade spec-F Io nsip in bout
iemory aapAcity; they assumed a limited short-term memory For hlolding
information about states, that would be produced by alternative -moves, and
they issumed that each state reached in solving the problem was stored in
iontg-termo nenory 4ith a Fixed probability.
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The model also specifies a sequence of processes For selecting a move.
The sequence includes calculating the evaluation function for alternative
moves, storing information about alternatives in STh, recognLzLng states
that 'nave occurred before on the basis of information in LrT, and deciding
whether to make a given move tinier consileration. The assumptions of the
model allow for several possibilities. A move might be selected if it
leads to an acceptable state; this was assumed to be less likely if the
state was recognized as having occurred before. The moves stored in STM
may be examined, with selection of the stored in LTM from previous
occurrences, a move may just be chiose at caadom from the set of possible
moves, or the subject may decide to return to the initial state of the
problem.

Atwood and Polson tested their model with data obtained from groups of
human subjects who solved different versions of the problem. Problems were
presented at computer terminals and records were kept of the moves made by
each subject. The model was Lplemented as a computer program which was
run with various values of the parameters. Because the model contains
probabilistic processes, it does not produce a single sequence of moves in
solving a problem. The model was run many times with each set of parameter
values, and a summary of its performance was obtained, consisting of the
average frequency of each of the possible problem states. A set of
parameter values was chosen for which the set of frequencies for two
problems (jar sizes of 8,5,3 and 24,21,3) approximated the frequencies
obtained from the human subjects. The parameter values that were chosen
seem quite reasonable. The size of ST was set at three alternative moves;
states reached in the problem were stored in LTM with probability .90; and
the threshold of acceptability for a new state was set at 1.0 above the
value of the current state.

Figure 2 here

Results of the simulation are shown in Figure 2. Each set of
predictions was based on running the model 250 times. The data for each
problem were from a group of about 40 subjects, different from the data
used to estimate the parameters. One problem, (8,5,3), was used in
estimation, but the other three problems were different. The model
correctly predicted the order of difficulty of these four problems. For
two of the problems, (8,5,3) and (12,7,4), the detailed predictions of
response frequency were satisfactorily close to the data by a statistical
test. For the two harder problems, although the general shapes of th
frequency distributions agreed with the data, the model erred in predicting

*2. This strategy dLfferes from the means-ends strategy of GPS in one

significant respect. GPS considers all the ways in which the current state
and the goal differ, and selects a move to reduce the most important of
these qualitative differences. Atwood and Polson's model combines the
ifferences into a single numerical index, the value of the evalution
function, and tries to reduce that difference by at least a threshold
amount. This difference probably does not have a significant effect on
predictions of performance in the water-jar task, but there are situations
in which strategies based on global evaluations and on individual
qualitative differences would lead to significantly different performance.
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too many returns to states at the beginning of a path that led to the goal.
As Atwood and Poison noted, this defect could be corrected by making the
?robabllity of recognizing a previous state depend on the number of times
it has been encountered.

Conclusions. Section II.A has been concerned with problem solving in
situations that are novel to the problem solver, in which a definite goal
and the set of legal problem-solving operators are described by the
instructions. The situation requires using some general problem-solving
strategy. The findings show that in situations of this kind, the strategy
of means-ends analysis represents the major feature of human
problem-solving performance. In this section we have discussed evilence
consisting of individual thinking-aloud protocols and aggregate response
frequencies in two tasks. Findings fitting this general pattern have been
obtained in a wide range of problem-solving tasks, including puzzles such
as the Tower of Hanoi (Anzai & Simon, 1979) and physics textbook problems
,Simon & Simon, 1978), which we discuss below in Section II.C.

Means-ends analysis is perhaps the single most important strategy that
people employ for searching selectively through large problem spaces. The
selectivity is powerful because it points search in the direction of the
goal, selecting operators on the basis of theiLr relevance to reducing the
distance from that goal. Use of means-ends analysis requires some
domain-specific knowledge; for example, it can h. Y inployed efficiently
only if the subject has learned enough about the problem domain to have
associated particular differences with particular operators For removing
them. However, it is basically a "weak method," applicable in situations
where the problem solver has little specific knowledge based on experianice

Ln the problem domain.

t , i I I " - I -' : -
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11.8. Domain-Specific Knowledge for Familiar Problems with Specified Goals

We now turn to problems that are solved by individuals who hive
specialized knowledge, acquired either through instruction or practice. We
will discuss problem solving in a domain of school aathe:natics, high school
geometry. Then we will discuss a phenomenoi that has been salient in e
problem-solving literature, problem-solving set or Eiinsteillung, which we
interpret as resulting from domain-specific knowledge structures.

11.3.1. Geometry Exercises. In school subjects such as geometry,
knowledge for solving problems is imparted intentionally through
instruction. Research conducted by Greeno (1978) had the goal of
investigating and characterizing the kOwledge that is acquicel by itudents
who learn successfully in the course.

The main data were obtained in a series of interviews conducted
approximately once each week with six students who were taking a standard
high school course in geometry. In each interview, an individual student
worked for about 20 minutes, during which he or she typically solvei three
or four problems. Most of the problems that were solved were typical of
homework or test problems that the students were working on at that tLhqe in
the course. Students were asked to think aloud as they worked, and their
protocols were recorded and transcribed.

Figure 3 here

One of the problems solved in an early session (during the second
month of the course) is shown in Figure 3. The problem as it was presented
is shown in the upper left. The upper right diagram provides notation for
referring to the various angles in the diagram. The seven steps shown
below the diagrams are a formal solution with inferences and justifying
reasons. The students were not required to write the solution steps of
this problem formally but they were required to state aloud the
intermediate inferences that they made. Most of the students solved the
problem in Figure 3 correctly. We will discuss specific aspects of their
solutions below. They were generally similar to the solution shown in
Figure 3.

The solution shown in Figure 3 was given by a computattonal model
called Perdix that was formulated to simulate the students' performance.
The structures and processes represented in Perdix are hypotheses about the
knowledge that students acquire in a geometry course.

Problem-Solving Knowledge. Perdix contains three kinds of knowledge,
all represented as production rules: (1) problem-solving operators that
make inferences, (2) perceptual concepts that recognize patterns In
diagrams, and (3) strategic processes that set goals and select plans for
problem-solving activity.

Problem-solving operators in geometry correspond to the theorems,
postulates, and definitions that are used as reasons to justify steps in a
problem solution. Examples include "Vertical angles are congruent" (a
theorem), "Corresponding angles are congruent" (a postulate), and "If two
angles are supplementary, the sum of their measures is 180" (a

--1
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1. meas. Al (P) - 40 1. Given
2. Al (P) 2 A6 2. Vertical angles
3. A6 ' A8 3. Corresponding angles
4. A8 supplem. A12 (Q) 4. Interior angles on same side
5. A6 supplem. A12 (Q) 5. Substitution
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7. meas. A12 (Q) 140' 7. Definition of supplem.

Figure 3. A solved problem in geometry. (Al, A6, etc. in the

solution refer to the positions of angles in the upper right diagram.)
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definition). When the antecedent of one of these propositions is satisfied
in a problem, then the consequent can be inferred. For example, because Al
and A6 are vertical angles in Figure 3, the inference that Al and A6 are
congruent is permitted. The propositions that correspond to the
problem-solving operators are prominent in geometry instruction. They are
represented in Perdix as production rules, with the antecedents as
conditions and the relations that can be inferred as actions.

Patterns of information in the problem have to be recognized to
determine that a problem-solving operator can be applied. For example, to
apply the inference rule "Vertical angles are congruent" in Figure 3 anl
thus infer that At and A6 are congruent, the problem solver must first
recognize that Al and A6 are vertical angles. In the geometry course,
perceptual concepts are taught with examples using diagrams. In Perdix,
knowledge for recognizing patterns is represented by discrimination
networks, similar to tlhe structures in the Elementary Perceiver and
Memorizer, EPAM (Feigenbaum, 1963) and the Concept Learning System, CLS
Qunt, Marin Y Stone, 1966). Perdix's recognition system is based on
features of a diagram, such as sides of two angles that are collinear,
along with other information that may be given or inferred, such as
statements that lines are parallel or perpendicular. An example is shown
in Figure 4, which represents the process that can recognize a pair of
vertical angles, a pair of angles formed by bisecting an angle, and other
patterns that involve pairs of angles that have a single vertex.

Figure 4 here

Strategic knowledge is needed for setting goals that organize
problem-solving activity. In the example problem of Figure 3, the maLi
goal is to find the measure of angle Q. This cannot be achieved directly,
and the problem solver must know that a way of finding the measure of an
angle is to find a quantitative relationship (e.g., congruent or
supplementary) of the unknown angle with one that has a known measure.
This can be represented as a production: when the current goal is to find
the measure of an angle, and the measure of another angle is known, set a
subgoal of finding a quantitative relation between the unknown angle and
the known angle.

Table 5 here

The importance of strategic knowledge is illustrated in the protocol
in Table 5. The student was working on the problem shown in Figure 3. The
student marked several angles in a copy of the diagram; these are
indicated in the protocol in parentheses in relation to the diagram in the
upper right part of Figure 3. For example, "P would equal one -AI)"
indicates that a label "1" was written on the angle in the student's
diagram at position Al.

The student seems to have known the problem-solving operators and the
geometric patterns needed to apply them (this was confirmed in another part
of the interview) but was unable to solve the problem. The most likely
hypothesis is that the student lacked knowledge of the problem-solving
strategy needed in this problem. The strategy involves forming a chain of
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Table 5

Protocol of an Attempt to Solve Figure J

S: All right. I would put, like, P would equal one (--9Ai).

E: Okay.

S: And then, two (--iAb).

E: Put in two there, right.

S: And then three (-*Ai5); no, wait -- three (--*Al5) and four (--*AI2), i

guess.

E: Okay. Now, why did you put two tnere?

S: Well, I don't know. it could have something to do with vertical
angles.

E: Okay.

S: All right, the first thing I guess I should try to do, I would try to

find if there were any alternate interior or corresponding angles?

E: Okay.

S: Or any of those.

E: Mm-hm.

S: I guess I would say that ... well, wait a minute. I guebs maybe I
would put five there (--A16).

E: Okay.

S: I don't know if I would need this.

E: Okay.

S: These two are supplementary.

E: Right.

S: That doesn't help much. And then, the measure of angle five ... would
it equal the measure of angle one?

E: Well, you might have to work that out.

S: How ... if this equals ... this equals forty.

E: That's right.

S: Oh, all right. Wait, the measure ... I can't, I don't know.
I don't know how to do these.

E: Okay.
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angles that are related by congruence. Knowledge of this strategy involves
setting a series of goals; when the problem requires a relation between
two angles, and none can be recognized, then find an angle related to one
of them by congruence and try to relate that angle to the other angle.

This strategic procedure can be applied recursively until an angle is found
that is related to the goal angle by one of the geometric relatLons from
which a quantitative relation can be inferred.

Four of the six students who were interviewed in Greeno's study solved

the problem in Figure 3 successfully, apparently having acquired the
strategy of forming a chain of congruent angles. About a week after giving
the protocol in Table 5, that student also was successful in solving a
problem that required the chaining strategy. The students iiffered in the
specific sequences of angles that they used, which could be the result of
differences in the way that they scanned the diagram looking for angles to
add to the chain, or to differences in the ease with which different

students recognized various geometric patterns. About a week after giving
the protocol in Table 5, that student was successful in solving a different
problem that also required the chaining strategy.

In geometry instruction, very little strategic knowledge is taught

explicitly; it has to be inferred by the students from example problems.
We believe that this is a common feature of instruction in domains
requiring acquisition of knowledge for problem solving, and we consider the

explicit teaching of problem-solving strategies as a potentially productive
development for instruction, based on the results of basic research on
cognitive processes in problem solving.

Strategic knowledge is represented in Perdix by productions that

select plans for work on problems. A plan is a general approach to the
problem, based on information in the problem situation. GPS forms such
plans using its general planning strategy, described on pages 19-20.
Perdix has specific cognitive structures for plans that are used frequently

for geometry problems. Forming a chain of congruent angles is one such

plan. Another is using congruent triangles to prove that two angles or two

line segments are congruent.

The organization of planning knowledge in Perdix is similar to that
developed by Sacerdoti (1977), called a procedural network. In a

procedural network, there are units of knowledge corresponding to actions
at different levels. Each of these knowledge units includes information
about the prerequisites and consequences of an action that can be
performed. In Perdix, knowledge of each plan includes information about

goals that can be achieved using the plan (its consequences), conditions in
problems that make the plan promising (its prerequisites), and subgoals

that should be set if the plan is adopted.

Perdix's strategic knowledge constitutes the main way in which it

differs from GPS. Strategic knowledge in GPS is the general means-ends
strategy that can be used in any domain for which the problem solver is
taught the operators, together with the productions that connect operators

with differences, and given the goal of a problem. The hypothesis
represented in Perdix is that instruction in a domain such as geometry
leads to acquisition of strategic knowledge specific to the domain, such as
the schematic knowledge that represents plans to use chains of congruent
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angles or congruent triangles. Both GPS and Perdix constriiot plans that
are more general than the actions that must be performed in solving the
problem. The difference is that GPS forms plans using its general
means-ends strategy, while Perdix's plans are based on knowledge of
specific geometry strategies.

When GPS plans, it use the strategic process of means-ends analysis in
a problem space that contains features taken lirectly from the basic
representation of the problem. GPS's planning space can be acquired by
learning which features of objects should he given first priority. In
Perdix, planning uses schematic knowledge of specific methods applicable to
problems in the domaia of geo:netry. These ichemata include general
subgoals, such as proving that triangles are congruent or finding an angle
with .a relation based on parallel sides, that can be used as intermediate
steps. The associations of these subgoals with the oals that they help to
achieve have to be acquired by students; they are not explicitly given as
goals of problems in which they are used.

Solution of Ill-Structured Problems. A hypothesis that is consistent
with the analysis of geometry problem solving is that domain-specific
strategic knowledge may provide the main basis for solving Ill-structured
problems. Problems may lack definite structure for many reasons. One
important source of indeftte structure is that a problem may require
knowledge from several different sources, so its solution requires
coordinated work in several disparate problem spaces (Simon, 1973).

A modest form of this kind of problem arises in geometry, involving
problems that require construction of auxiliary lines. The problem space
that is presented, including a diagram, given information, and a goal to be
proved, must be augmented in order for the problem to be solved. Greeno,
Magone, and Chaiklin (1979) proposed that solution of such problems can be
based on an individual's knowledge of plan schemata. In the model Perdix,
the need for an auxiliary line is recognized when a plan's prerequisites
are partially satisfied in the problem situation. This leads to defLnition
of a subproblem; the goal is to complete the pattern of features that
constitute the prerequisites, and this goal is achieved in a problem space
with operators that are appropriate for that goal.

Figure 5 and Table 6 here

An example is shown in Figure 5, the drawing and written work af a
student on the following problem: "Prove that If two sides of a triangle
are congruent, then the angles opposite those sides are conigruent." The
protocol given by this student is in Table 6. After drawing the triangle
ABC, the student added the line CD, which is not specified in the initial
problem space. The student's comments at *1 and *2, along with the
retrospective comment at *3, provide evidence that construction of the
auxiliary line was related to a plan of proof involving congruent
triangles, and the construction completed a pattern that is required for
that plan ;o be applied, that is, the presence of two triangles in the
diagram. Perdix simulates solutions like this with a process of patterns
recognition that identifies partial patterns of two triangles missing a
line, and uses special problem-solving operators to complete the patterns.
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Figure 5. Drawing and written work on the problem, "Prove that if
two sides of a triangle are congruent then the angles opposite
those sides are congruent."
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Table 6

Protocol for the Problem of Figure 5

S: Okay, if two sides of a triangle are congruent, so

draw a triangle.

E: Okay.

S: Then the angles opposite those sides are congruent. Okay, so, like,

if I have . . . given: triangle 13C--I'll letter it ABC.

E: Right.

S: And then I have . . . prove: . . . do I already have these two sides

given? Okay. Two sides of a triangle are given.

E: XMmm-hmm.

S: Let me go back to my given and say that segment AC is congruent to

segment BC.

E: Okay.

S: And I want to prove that angle A is congruent to angle B.

E: Good.

S: All right. Let me write down my given. Okay. And mark my

congruent sides. Okay, so, I want to prove that angle A is congruent

to angle B. Now, let's see. Do you want . . . ?

E: Yeah. Whiy are you drawing a line there?

*i S: I don't know yet.

E: Oh, that's okay. Don't erase it.

S: I'm going to do it, no, I just . . .

E: Oh, okay, fine.

S: Okay . . . okay, then I could . . . if I drew a line . . .

E: Mzm--hmm.

*2 S: That would be the bisector of angle ACB, and that would give me

those congruent angles . . . no. (Pause.) Yeah, well, that would

give me those congruent angles, but I could have the reflexive property,

so this would be equal to that. Okay, I've got it.

E: Okay.

S: Okay.
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E: :ow, before you go ahead and w-rite it all dow-n, when you said you

were going to draw the line . .

S: Yeah.

E: And I said why are you doing that, and you said you didn't Zow

yet, what do you think happened to give you the idea of making it

the bisector?

*3 S: Okay, well, I have to try to get this . . . I have to try to get

triangle ACD congruent to BCD. Because, if I do that, then angle A

is congruent to angle B because corresponding parts of congruent

triangles are congruent.

E: So you were drawing the line to give yourself triangles, is that the

idea?

*4 S: No, to . . . to get a side that was in both triangle:.

E: Okay.

S: And to get congruent angles.

E: So that's why you drew it as the bisecotr.

S: Yeah.

t

V ___ ____
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Another way in which problems can be ill-str~ictured invol,?es tie way
in which goals are formulated. Q)als ii ioll-structared problems are
presented as specific objects (e.g., a specific logic expression to b -
derived )r a specific distribution of water imong some jars). In
ill-structured problems, goals are often uaderdetermined, with .everal
alternative ways in which they might be satisfied. Examples are frequently

cited from art or science, such as the goal t) compose a fugue, or to
iesign an interesting experiment. In school geometry, the goals of
problems are usually well specified, but a subgoal that ir'ses in many
problems functions as an indefinite goal for experienced problem solvers.

This is the goal of proving that two triangles ire cn gruent. There are
several ways in which congruence of trilagles can he 1irive1, i:VOIcqli

different patterns of conigruent componients sich i s ide-side-i.;le,

side-angle-side, and so on. Beginning learners treat these as definite

subgoals, trying one after aaother until one is found that Works (Andersn,

Greeno, Kline & Neves, 1981). However, more setrioe. ltdents d_ ',ut

mention specific patterns Ln their protocols, and appear to egn~e in

relatively diffuse search for congruent compolnent; )f triangles wih i "ind

of moritor that identifies ,hatever pattern of congruent components happens
to emerge. Greeno (1976) hypothesized that experienced st ienv l :]uire an

integrated structure of knowledge in the Formn of a pitter-l-recognizinrg
system that represents th± goal of proving that trai,-Iiles are congruent. A
version of this that was implemented in Perdix is 3hown in Figure K.

Figure 6 here

Acquisition of Problem-Solving Skill. An imporrant qLestinn is how

the knowledge required For solving problems in a domain such as geometry is
acquired. We discuss studies of learning involving the three kinds )f
knowledge for problem solving: problem-solvig ,per-tors, perceptual

concepts for pattern recognition, and strategic knowledge.

Processes of acquiriag problem-solving )perators were analyzed by
Anderson (1982), based on observi )ns of three students as they studied

and worked problems in the early sections of a geometry text. Anderson
simulated processes of acquiring problem-solving skill in a version of 'his
ACT model (cf. Anderson, 1983).

A major aspect of nderson's model is a process that acquires

cognitive procedures from declarative information. ACT learns new
procedures by working on problems. 7then ACT encounters a prohlem f)r hich

it has not learned a procedure, it uses general problem-solving nethods
along with information that is availiblo is it As 'L a text. 7or ,m TpIe
a geometry problem may require finding a theorem that can justify I step in

a proof. ACT has a general pr)ce,,dure for sti--iig -i L,* ;t of theorems

and matching features of theorems to the i:iforatio. in a problem. When ir

applicable theorem is found, ACT asserts t'it thorem to Solve that part of

the problem.

ACT has a learning process called proceduralization, which forms new
production rules that are added to ACT's procedural knowledge. A new

production can be formel hen a theorem has been found and applied

successfully in problem solving. The new production has conditions

corresponding to selected features in the problem situation, and an ictIon
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of asserting the theorem. The production is a new problem-solving
operator; ACT has acquired a new ability to assert a theorem in
appropriate conditions, without having to search in the list of theorems in
the text. It has learned the theorem, not in the sense of having memorized
it, but in the sense of being able to recognize when it is applicable and
to apply it.

Acquisition of perceptual concepts for pattern recognition in problem
solving was studied by Simon and Gilmartin (1973) in the domain of chess.
The learning mechanism used was adapted from the EPAM model (Feigenbaum,
1963), which simulates acquisition of discrimination networks like Figure

4. Simon and Gilmiartia developed an EPAM-type model that acquired
knowledge of patterns of chess pieces from presentations of board
positions. This knowledge was used to simulate performance in a task of

reconstructing positions after brief presentations, a tisk k now to
differentiate players according to their level of skill (deGroot, 1965;
Chase & Simon, 1973; also see Section 111.3.2).

-cquisitUon )f itrategic knowledge for solving problems has been
sttilied empirically by Schoenfeld (1979). Four students in upper-division
college mathematics courses were given special instruction in the use of
five heuristic strategies For working on problems: drawing a Ilagram,
arguing by induction, arguing by contradicition or contrapositive,
considering a simpler problem with fewer variables, and establishing
subgoals. Each strategy 4as presented in a training session, lasting about
one hour, including explanation of conditions in whIch the strategy is
useful as well as practice Ln using the strategy. Students took a pretest
and a posttest with problems not included in the training. Students who
received the special training had a list of the strategies available during
the posttest and were reminded from time to time to try to use one of the
strategies if they were not progressing well on a problem. Performance of
these students was superior to t1ht of another group of students who had
worked on the same training problems as the instructed group, but without
explanation of the strategies. Thinking-aloud protocols confirmed that

students considered and used strategies that they had been trained to use.
The training was especially effective with strategies that have clear cues

for their application: the fewer-variables strategy, cued by the presence
of many variables, and arguing by induction, cued by an integer argument.

Processes of acquiring strategic knowledge have been addressed in
theoretical analyses by Anzai and Simon (1979) and by Anderson, Farrell,
and Sauers (1982). Anzai and Simon observed and simulated acquisition of a
strategic concept in the Tower of Hanoi puzzle. The concept involves
movement of a set of disks requiring a sequence of individual moves, with
the sequence considered as a global action. Anderson et al. simulated
acquisition of knowledge for applying techniques in learning to program in

LISP. In both of these theoretical analyses, important Factors in
acquiring strategic knowledge are activation of a problem goal that can be
achieved by a sequence of actions and acquisition of R production in which
the action of setting that goal is associated with appropriate codlitions
in the problem situation.

" l
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1I.B.2. Einstellung (Set) The context in which problem solving occurs
may have an important influence on the process. As a consequence of
previous tasks in which a subject has been engaged or previous stimuli that
have been presented, certain responses may become more readily and speedily
available and others less readily available. The subject has acquired a
"set" for the familiar stimuli and responses.

One experimental design that has been used often to demonstrate the
effects of set is to present subjects with a sequence of tasks that induce
set, then a new sequence of tasks in which the set that has been induced
either facilitates or impedes performance in comparison with control
subjects who were not exposed to the first sequence. Luchins (1942)
conducted a well-known set of experiments using this design, with water-jar
tasks.

In Luchins' version of the water-jar task, subjects must measure out a
specified amount of water, using a given set of ungraduated measuring jars.
A source of water is assumed to be available, so that any of the jars can
be filled to its capacity if the subject chooses to do that. In addition,
water can be poured from one jug to another, until the target jar is filled
or the source jar is empty, and the contents of a jar can be discarded.

Table 7 here

The series of problems that Luchins used is in Table 7. Here, all the
problems except the first and the ninth can be solved by filling jar B,
then pouring from it to fill A, and then filling C twice (X - B - A - 2C).
But Problem 5 and Problems 7 through 11 can also he solved using only jars
A and C -- by either adding the contents of C to the contents of A, or
subtracting the contents of C from A, and for ?roblem 9, the B - A - 2C
procedure does not work.

Subjects given Problems 7 through 11 immediately after solving Problem
I generally use the two-jar procedure just described. Subjects who are
first given Problems I thorugh 6 generally use the B - A - 2C procedure,
which is more complex than necessary for Problems 7 through 11, and they
have considerable difficulty with Problem 9.

Set effects can be the result of several cognitive processes; we will
discuss three that have been put forward.

First, set may be the result of a bias in retrieving knowledge
structures from memory. A standard assumption is that the alternative
concepts or cognitive procedures that might be retrieved have varying
strengths or levels of activation which determine the probabilIties of
their retrieval. If a cognitive unit has been used successfully several
times in the immediate past, this results in a relatively high level of
activation fo- it unit.

Figure 7 here

.. . .. . I
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Problems Used by Lucnins (1942)

Problem Measuring Jugs Required

Number A B C Amount

1 29 3 20

2 21 127 1%

3 14 16j 25 99

4 16 43 10

5 9 42 6 21

6 2u 59 4 31

7 2- 49 j 20

6 15 39 3 16

9 26 7o 3 25

10 id 4d 4 22

11 14 3b 8

(
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Given: M is the midpoint of X8 and C-;

AiC a! 80-.

Prove: L.AMC a L-BMD

( Fi~ure 7. An Einstellung problem in geometry.
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Schemata used in planning provide one kind of structure that caa
accoulnt for set. An -ample is iL th ioma[n of geometry, where Greeno, et

l. (1979) developed a si ulation model w.th planning schemata, described
in Section II.B.I. Iuchinq (1942) included a study of geometry problem
solving in his investigations of Finstellung. Figure 7 shows the kiid of
problem used as a test. The proof can be obtained in one step; LAMC and

LBMD are vertical angles. However, if i,,bje:ts were first given a series
of problems where they used congruent triangles in profs, they were likely
to construct the -more complex proof for Figure 7 in which triangles AMC and
BMD are proved congruent by Side-Side-Side. An e xplanatlonl is provided if
4e assume that students have a schema corresponding to the plan of using
congruent triangles for a proof, and that this schema has a high level of
activation because of its use in the initial series of problems. Greeno et
-l. (1979) reported al eiperimnAt 4ith i tst problem that could be ved
either using congruent triangles or angles formed by parallel lines,
either method required construction of an uixiliary line. Subjects we:,
given series of problems before the test problem involving either congruent
triangles or parallel lines, and were strongly biased toward solutions of
the same type they had been giving.

Set based on activation -nay either facilitate ask performance or
impede it, deperling on whether the memory elementi t'at ire activated
contain the information that is needed for perforiance. Sweller and Gee
(1978) showed that the tendency to use a previously successful rule can
greatly facilitate solution of a relatively complex problem, presumably by
eliminating the need to search in a large space of possibilities, even
though in the same situation it prevents subjects from noticing a simpler
solution method. Such situations are common, since set is bound to arise
wherever memory organization is not neutral with respect to the
problem-solving process -- that is, wherever there ace alternative ways of
storing information in memory, one of which may be more conducive to
retrieval in a given problem context than another.

A second possible explanation of Einstellung is provided by
composition of productions, investigated first by Lewis (1978).
Composition is a process in which a newly acquired production performs

actions that required two or more productions in the previous knowledge
structure. Composition generally makes performance nore efficient by
providing a way to act directly rather than requiring several steps to
achieve a goal. The new productions created by composition usually have
conditions that are relatively specific, and in some production systems
(including ACT) this leads to their being preferred to productions with
less specific conditions. Anderson (1982) noted that this would simulate
the performance observed by Luchins (1942) on problems like Figure 7.

Third, some set-like phenomena could also be produced by the basic
problem-solving procedure that a subject uses. We have already noted that

subjects very frequently use the heuristic of means-ends analysis -- that
is, comparing situation with goal and taking an action that seems to reduce
the difference between them. In their analysis of behavior of subjects

solving water-jar problems, Atwood and Poison (1976) showed that where
alternative actions could be taken, most subjects selected the one that led
to a situation that was most like the goal situation. Like the more

specific sets induced by Luchins' manipulation, this general set to pick

paths that lead toward the desired goal can sometimes interfere with

-U_ _ _ _ _ _ _ __ _ _ _
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problem solution. Where memory limitations prevent subjects from looking

far ahead, this goal-oriented strategy may sometimes produce a nyopLc
preoccupation with immediate progress, and an avoidance of paths that lead
to the goal only indirectly. Jeffries, Polson, Razran, and Atwood (1977)

showed that, without look-ahead, subjects solving the Missionaries and
Cannibals puzzle would have difficulty (as, in fact, they do) on the step
where they were required to bring two persons back from the farther bank of

the river to which they were trying ultimately to transport all of them.

2.1..
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II.C. Problems with Specified Procedures

In the tasks discussed in II.A and II.B, a definite goal is presented
to the problem solver. In this section we discuss tasks in which the
problem presents material for a procedure, and the task is to apply the
procedure to find the result that is obtained. While the tasks discussed
in II.A and II.B specify a goal and require a method to get there, the
tasks we discuss now specify a method and ask where the method leads.

The tasks that we discuss come from arithmetic. Many tasks of
applying procedures occur in irathematics, For example, finding a derivative
in calculus or finding the product of two expressions in algebra. Some
people would object that such tasks do not involve problem solving, since
they require knowledge of a procedure rather than i.irch in a s ?ace of
possible solutions. On the other hand, these tasks are considered as
problems by students who receive them as homework .signnents (and
presuanably by teachers who assign them).

More significantly, the knowledge requLred for these procedure-based
tasks is similar t) the knowledge that individuals acquire when they learn
to solve problems thiat do not specify solution methods, such as geometry
proof exercises or -ater jar problems. Kiaowledge for planning in geometry
constitutes a set of procedures that t'ie student has acquired for solving
various kinds of problems. Use of these procedures requires recognition of
their applicability, which is not required if the problem says "subtract"
or "differentiate;" however, characteristics of the procedural knowledge
that 'have been identified by theoretical analyses of the various tasks are
more notable for their similarities than for their differences.

Our discussion in this section is focused on empirical methods that
have been used to infer the nature of procedural knowledge. First, we
discuss inferences based on patterns of errors that occur in elementary
arithmetic. Then we discuss inferences from latency data.

II.C.I. Diagnosis of Cognitive Procedures from Patterns of Errors.
Brown and Burton (1980) analyzed children's knowledge for subtraction
problems with multidigit numbers. Their data were obtained in an
arithmetic achievement test taken by 1325 school children. Ordinarily,

performance on tests is used to assign a simple score for each student,
allowing judgments of which students have learned a satisfactory amount.
Brown and Burton's analysis shows that test data are potentially much
richer, and can be used to make stronger inferences about the nature of
children's knowledge.

The more powerful theoretical use of test data depends on two things.
First, performance on the test is not characterized simply by the number of
problems correct, but by the specific answers given to ill the problems,
with particular attention to the incorrect answers.*3 Second, the analysis
of each student's test performance consists of a model of a procedure for
solving the problems.

isno-
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Table 8 here

An example of an individual's performance is in Table R. Table
contains six errors (the fourth problem in the second row, and all the
problems in the third row), not a very good score. However, all but oxe of
the errors were apparently caused by a single flaw in the student's
procedure. When the student had to borrow and encountered a zero, the
student replaced the zero by a nine, but did not go further and decrement
other digits in the top number.

Brown and Burton developed a general -,odel of subtraction for which
various flawed versions can be represented as variants. The desired
outcome is that the performance of -ach nldividual child, such as that
shown in Table 3, should correspond as closely as possible to one of the
variants of the general model.

The general model has the form of a procedural network, the formalism
developed by Sacerdoti (1977) and used by Greeno et 4l. (1979) to explain
constructions and set in geometry problem solving. The main features of a
procedural network are that units of knowledge correspond to actions at
differing levels of generality, and each action unit includes information
About conditions for performing the action and the action's consequences.

Figure 8 here

Figure 3 shows the action components in Brown ani Burton's procedural
network for subtraction. The diagram shows componeit procedures and their
subprocedures, but does not show any of the control information that is
also required. For example, the diagram includes a procedure
Subtract-Column, and three subprocedures, Borrow-Needed, Do-Borrow, and
Complete-Column, which can be called from Subtract-Column. Control
knowledge involviig these subprocedures includes the information that
Borrow-Needed is a test that determines whether it is necessary to borrow

before finding the difference in the column, and the outcome of that test
determines whether Do-Borrow will be called.

Brown and Burton formulated models of faulty performance by varying

components of the procedural network for correct subtraction. For example,

*3. The idea of using patterns of errors to infer underlying

psychological processes is not new, either in the psychological or the
educational literature. Earlier psychological models were simpler, and the
inferencers about processes were correspondingly less powerful; an example
is Polson, Restle and Poison's (1965) use of errors to identify a stage of
learning in which similar stimuli have not yet been discriminated. In the
educational literature more complex psychological distinctions have been
made, for example by 3rownell (1941), but in that work, analyses of
underlying psychological processes was informal, consisting of verbal

descriptions of procedures hypothesized to produce observed error patterns,
and as Brown and Burton documented, verbal descriptions of procedures turn
out to be ambiguous in important ways.
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fable 8

One Student's Performance on Subtraction Proolems

(from Brown & Burton, 19i6)

6 99 353 oij di
3 79 342 221 17
5 20 1l -41 0,4

4769 257 6523 1ji 7315
0 161 2ou 614 053o

4769 9b 5.1 i9 9

1039 7u5 lUiod 10060 70ul
44 9 4319 96 94

1995 76 IJ7i9 J9oo2 70U7

II
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Figure 8. A procedural network for subtraction (from Brown &
Burton, 1978).

(, . .
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the flaw of borrowing from zero is modeled by removing some of the control
processing from the procedure lorrow-Ten in the Do-Borrow subprocedure.
The change involves removing the decision to Find-Next-Column if a zero is
found, resulting in A procedure that just changes zero to nine and adds ten
to the original column.

T1. fimily of models that Brown and Burton arrived at included 60
procedural flaws of the kind described above. These r( "bugs" provile
e<plinat ins for many of the patterns of performance found in the test
data, and more students' performance is explained if combinations of
elementary bugs are included in the analysis. About 40% of 'e students'
error patterns were explained reasonably well by single bugs or
combinations of two elementary bugs. In examining additional sets of data,
ore elementary bugs 'have been identified (115 elementiry bugs are :now in

the data base), and adequate explanations are typically provilel for about
40% of students who make errors (VanLehn, 1982).

An alternative analysis of subtraction errors was provided by Young
in, O'Shei (1981), who developed a relatively simple product on system h!it
simulates correct subtraction performance, and by delet ing ndtivilual
productions, simulates faulty performance. Young and O'Shea's inalysis
p')vides explanaitiors for about the same proportion of students as Brown
and Burton's. On the other hand, it provides explanations for only i sa~ l
proportion of the patterns of performance that have been observed. 'Wile
many patterns )cur rarely, their existence provides eviden:ce for a
relatively complex generative system.

Another significant development has been an effort by Brown aii
VanLehn (1980) and VanLehn (1983) to formulate a system that explains the
production of "buggy" procedures. These formulations distinguish between a
cognitive structure of partial knowledge of subtraction, and a "fallback"
process oE problem solving that is used when a situation is encountered for
which the partial knowledge is not adequate. In VanLehn's (1981) version,
the uinderlying cognitive structures, core procedures, result from a
combination of partial learning ind deletion of c,)mponents of procedural
knowledge. A core procedure night, for example, lack a component for
dealing with a zero diiring borrowing. When such an impasse occurs it is
assumed that the problem solver applies a general problem-solving method to
be able to .)nttnue. Methods assuMed to 'e available include skipping -n
operation, applying the operation to a different problem element, and using
an alternative operation that is applicable in a similar problem situation.
One form of evidence that supports the theory comes from data obtained by
giving students repeated tests. In a substantial number of cases, students
perform differently in two tests separated by two or three days, but th.-
performance can be explained by assuminig a single core procedure for which
different problem-solving methods have been used.

Van Lehn (1983) conducted theoretical investigations in which a small
set of problem-solving methods is combined with a plausible set of core
procedures to generate buggy subtraction procedures. The generative system
that has been developed can account for about one-half of the buggy
procedures that have been observed; amendments that would increase the
theory's empirical adequacy could be devised easily, but would not have
strong theoretical motivation. Part of the progress that has been made
involves identifying some general features of the system. It can be
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argued, based on general properties of bugs. that tlhe system has a
push-down memory for recalling past goals, that goals are organized
hierarchically, and that the representation of a goal includes the problem
_'omponeats to whiclh the goal applies.

Another line of analysis that has developed from the study of
subtraction bugs involves analysis of cognitive structures for
understanding general arithmetic principles that underlie correct

subtraction procedures. We will discuss this theoretical development in

relation to the topics of representation and understanding, in Section
II.D.2.

II.C.2. Inferences Based on Latencies. We now discuss an rithmetic

task thlat is even simpler than multidigit calculation: answering basic

addition problems such as 3 + 5. The main dita used in the analyses are
latencles. Patterns of latencies of individual subjects are used to
diagnose their solution processes.

We focus on an empirical study by Groen and Resnick (1977). Subjects
to the experiment were five preschool children who knew ho to count and
could recognize the numerals I - q, but who did not krow about addition.
These children were taught a method for addition using blocks. The
procedure was to count out two piles, each having one of the numbers In it,
and then count how many were in the two piles together. For example, For 3
+ 5, the child could count out a pile of three, then a pile of five, and
then count the complete set to find eight as the answer. In showing the
child the method, the experimenter sometimes started with the number on the
left of the problem, and sometimes with the number on the right.

"Me problems used were basic addition facts involving the digits I -

5, omitting 5 + 5. After a child could solve all 2!& of these problems
.:rrectly using blocks, a new apparatus was introduced. The blocks were no
longer provided, and the child answered problems by pressing buttons
labeled I - 9. Children were shown how to count out answers on their
fingers if this as necessary. Children received from four to seven blocks
of problems with this apparatus, with about 25 problems per block.

The latency data were analyzed using regression techniques; models of
cognitive processes were employed to determine the values of independent
variables. Two models were used.

According to one model, the process of finding the answer to each
problem was much like the procedure that the children were taught. In that
procedure, a number of sets aust be counted; in fact, the total number of

counts equals twice the number that is the answer. If we assume that a
FiLrly uniform amount of time is used, each time something is counted, then

the total amount of time needed is
T = A + B(2S),

where S is the sum of the two numbers (i.e., the answer), and A and B are

constants.

According to a second model, the process is considerably simpler. The

sun can also be found by starting with the larger of the two addends and
counting up the number of the smaller addend. According to this model, the
time it takes to find the answer is

I~ ~~~~~~~~~ M .... . -MM-M" " i i ... . II
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T - A + B(M)
where M is the minimum addend, and again A ind B Jre constants. These two
models are called the Sum Model and the mfim 'Molel, respectively.

Comparison of these to nodels with the data of children's performance
is interesting primarily for the possibility that children - ot nsly
change their procedure for solving addition problems. If theyise the
procedure they were taught, their performance should igree with the Sum
Model. However, performance consistent with the )lin Model lould ref'et a
more efficient procedure, and would indicate that children hod
spontaneously modified their problem-solving pr ocedures. It would thus-
indicate a significant capability f)r discovery or Inventioin.

To apply either the Sum or the '11i Model to the lita, prole-ns -are
grouped according to the number of c)unting operatL)ns they require.
lecause tlie models specify different counting operations, they imply
different groupings of items. For example, accorlln t'e Sum Model, th,-
problems 6 + 1, 5 + 2, and 4 + 3 all require the. sane nr )f operations,
but these problems require diFFerent numbers )f counts according to t e ni
Model. On the other hand, the problems 4 + 3 and 3 + 5 req iLre the sane
number of counts hy the Min Model, but are different according to the Sum
ode l.

If a model is approximately correct, the regression boed on that
model should give accurate predictions of problem late-Ty. The - iitertm
of fit uied by Groen and ResnLck was the proportion )f variInce, R-,
accounted for by the regression. Higher values of R2 indicite better
agreement between the latency data and the theoretical function.

Table 9 here

Table 9 shows that about one-half of the subiects were fit ' 'eter iv
the Min Model than by the Sum Model. Vilues of R ire sh)n for lItecy
data from each block of problems except the First, in 47hich the children
were getting used to the new apparatus. Subject, 2 ind 4 were fit better
by the Min Model, Subject 5 was fit better by the Sim M1odel, and Sibiect I
underwenit A transition, being fit better by the Sum Model in i,ks 2 - 5,
but by the Min Model in Blocks 6 and 7. Another experiment, In dhtch
practice problems were presented in a systematic )rder, lhad similar
results.

The important conclus[on tiken from these data is that children must
have discovered the procedure represented by the 'Mmn Model, s 'oce they ere
not taught how to add in that way. Neches (l81) has developed in aalysis
If learning mechanisms that -n produce nodl 'td procedures, and used his
system to simulate changes in counti:g pr)cedures for addition problems.
Te -ain ideas in Neches' model iro that redundant components of the
procedure can be removed, and when there ire Alternative ways of reaching
the same result, the easier method can be chosen. For example, in the Sun
procedure, the first addend is counted, then later the process of counting
the combined set includes counting the first addend as a part. Noticing
this redundancy leads to removal of the initial count of the first addend
from the procedure. Choice of the larger iddend to Initilaize the
procedure cin be made if it is noticed that the same result 1, obtained
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Table 9. Results of Applying Regression Models to Latency Data
(Groen & Resnick, 1977).

Subject Block Proportion .. iportion __ _Slope of best
eros covert fitting lineSum Min 4seconds)

1 2 .15 .02 .78" .65' .92
3 .09 .00 .45 * .16 .60
4 .03 .04 .79 .38 .67
5 .03 .08 .69' .57* .91
6 .06 .33 .50' .59" 1.66
7 .05 .34 .40' .63" 1.90

2 2 .18 .40 .44' .65" 2.82
3 .14 .57 .51' .88 2.30
4 .11 .57 .51 .69" 2.06
5 .06 .76 .22 .38' 1.40
6 .06 .99 .23 .54* .40
7 .11 1.00 .17 .43" .26

3 2 .04 .00 .14 .00 -
3 .03 .09 .71 .57" .99
4 .05 .05 .50 .27 .73
5 .11 .30 .06 .13 -
6 .12 .92 .05 .30 -
7 .07 .83 .03 .10 -

4 2 .25 .73 .23 .54 1.77
3 .12 61 .38" .41 1.60
4 .06 .94 .32 .65 1.38

5 2 .04 .94 .47' .43' 1.30
3 .09 1.00 .55' .49' 166
4 .02 1.0 .25 .12 -
5 .01 .99 .21 .17 -
6 .06 1.00 .52' .20 .64

Note. Asterisks denote slope significantly different from zero at .01 leve[ Italics denote maximum R!

II, q q

.1t
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regardless of which addend is used, and less effort is required if tie
larger addend is chosen. To produce ,iodificat ions in its procedures,
Neches's system requires a trace of its activit', icluding the goals that
are active during the various stages of its performance.

The regression method also mis oe !:iS] iI iialyzLig -)erf )raance of
adults in simple arithmetic tasks. Groe ni Pirk:nan (1972) found that
college students' performance is 1it, conslstent with the Min Model. The
slope of the best fitting regression equation i far too small to
correspond to verbal counting, but an inalogue of a counting pro'e1ure
might be postulated to account for the re-llt.

More recent studies of performance in mental arithmetic have been
conducted by Ashcraft and his associates. Using a task in which subjects
are shown a problem with a possible answer and are asked whether it is
,orrect, .shcraft and Battaglia (1979) found an effect p)F problem size
(i.e., longer latency when problems I violve larger ninbers), but this
effect was not linear in the smaller adiend, as required by the Min Model.
A better predictor of latency was the square of the problem sum, an effect
that seems inconsistent with i simple process of counting. Ashcraft and
Battaglia also found that latencies were f;ister For rejecting wrong answers
that are very different from the correct answer, compared t 4rong ansiers
that are near the correct answer. Another relevant finding by Wnkelman
and Schmidt (1974) is that latency was slowed by a false inswer that would
be correct For a different operation; for example, 3'X 4 = 7. As Ashcraft
and Stazyk (1981) have argued, these Findings can bp explained no~t easily
lby ass3uing a process of retrieval from neaory, rathier than a counting
'?rocedure, with effects on latency that result from the way in which
i,iformation i; itored and from processes of .irt tmat ' A and se.arch.

(" .. . . . " ! n ] ° i l",
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11.D. Problem Understandag; Representation

lefore a problem can be solved, it must be understood. "any problems
used in education are presented as natural-language texts that describe
situations and ask questions, usually the values of some quantities. In
laboratory studies, problems often are presented in the Form of
tastru'ctioris that specify the goals and problem-solving operators that can
be used in working on the problems. these texts or inqstructions must be
interpreted, and some kind of representation of the problem must be
generated before problem-solving processes can be put to work in seekiag a
solution.

The same problem may be represented in radically different ways. This
is illustrated dramatically by the "mutilated checkerboard" problem. We
are given an ordinary 8 x 3 chezkerhoard, 4ith alternating black and red
squares, and a set of dominoes, each of which is exactly the rtght size to
-"over two squares. The entire board can be covered neatly by 32 dominoes,
Lth no square uncovered, and no domino hanging over the edge of the board.

Suppose now that the north-east square anid the soIth-,est 3qiare oF the
cIheckerboard are cut off, leaving 62 squares. Can the mutilated board now
be covered neatly by 31 dominoes?

It is impossible for a human betig or a ci),puter t,) answer this
question by exhaustive search in the obvious but enormous problem space in
which the ;quares and dominoes are represented dirhctly. Consider,
however, an abstract problem space in which we represent only the number of
dominoes that have been laid down, and the numbers of black squares and of
red squares that remain uncovered. At the outset, because of the
mutilation, there are 32 red squares, but only 30 black squares "or vice
versa). Each domino covers exactly one red and one black square. Hence,
no matter how the dominoes are placed on the board, after 30 have been
placed, if that is possible, two red squares and nio black squares will
remain uncovered. But the final domino cannot cover two red squares, hence
there is no way to complete the covering. Here, a change in problem
representation changes the problem from one that is practically unsolvable
to one that is solvable relatively easily.

Figure 9 here

Another famous example of problem understanding, discussed by
Wertheimer (1945/1959), arises in finding the area of a parallelogram.
Students are taught that the area of a parallelogram can be calculated with

a formula A - b x h, where b and h are the base and height, respectively.
Wert eimer described two ways in which the formula may be understood. In
one representation, b is the length of a horizontal side of the
parallelogram, and h is the length of a vertical line drawn from a corner
at the top of the figure to its base, as shown on the left oF Figure 9.
Many students, apparently using that representation, become confused if
they are then asked to find the area of a parallelogram oriented
differently, as in the right side of Figure 9. Another way to understand
the formula includes a relationship between parallelograms and rectangles.
A parallelogram can be transformed into a rectangle by removing a
triangular piece from one end and attaching it to the other end. Then 1
and h are equal to the length and width, respectively, of the rectangle
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Figure 9. Parallelograms in rwo orientations. Some students who (earn the formula A b x h have difficul.
ty applying it to a figure like the one on the right. (Wertheimer, 1945/1 951).
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that the parallelogram can be transformed into. -hildren who understand
the parallelogram problem in this way have no difficulty in solving
problems where the figure is oriented differently, and frequently can
transfer their knowledge to solve more complex problems, such as finding
the area of a trapezoid. The two representations involve different
features of specific problems, one with In and h identified with specific
locations in the figure, and the other with b and h defined in more general
terms.

In Section II.D.I, we discuss studies of problem understanding,
involving instructions for novel problems and text problems in domains
where the problem solver already has learned the problem-solving operators.
In Section II.D.2, we discuss understanding of the structures of problems
and problem solutions, in contrast to mere rote or mechanical knowledge of
problem-solving procedures, the issue emplhasized by Wertheimer and other
Gestalt psychologists.

II.D.I. Understanding Problem Instructions. In most studies,
consideration of subjects' behaviors in problem-solving tasks is begun
after the subjects have reneived the problem instructions, including the
definition of the problem, and have been tested by the experimenter for
their understanding of the problem. In a few cqses that we discuss here,
the processes studied are those required for assimilating the problem prior
to making attempts to solve it.

In the situations that have been studied, solution of the problem is
likely to proceed by a form of means-ends analysis. Therefore, the
information that subjects extract from instructions is probably similar to
the information needed by the General Problem Solver. When GPS is given a
problem, it is provided with a list of the objects with which the problem
is concerned, the relevant properties of these objects, operators for legal
moves, a description of the starting situation, and a set of tests to
determine when the final goal has been reached. It must either be provided
with, or acquire by learning, a set of tests for differences between
situations, and a set of productions that evoke, when particular
differences are present, operators that are relevant for reducing these
differences.

For example, in the Tower of Hanoi problem, the objects are disks (N
in number) and pegs (3). A legal move consists in transfering the smallest
disk on some peg to another peg that holds no smaller disk. Hence, the
size of a disk is its relevant property. Situations differ with respect to
which disks are on a particular peg, or with respect to the peg on which a
particular disk is located. In the starting situation, all the disks are
held, say, on a single peg; the goal is to move the entire set of disks to
some particular other peg. The problem description must provide all of
this information, in English, and the subject (or computer program) must
convert this English prose into an internal representation that permits
situations and moves and their consequences to be modeled. A disk, for
instance, may be represented as a schema, one of whose attributes is its
size; a peg by a schema, one of whose attributes is the list of disks
currently on that peg. A move operator is a process that changes a pair of
the latter listR, by moving the name of a particular disk from the one list

to the other.

i
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Two central problems for psychological research on the understanding
of problem instructions are: (1) how the verbal instructions are converted
to an internal representation; and (2) what characteristics of the
instructions cause the problem to be represented in one way, rather than
other possible ways. The second question is especially important when
alternative representations differ in the difficulty of solving the
problem, as with the mutilated checkerboard example, or provide differing
degrees of generality, as with the parallelogram problem. The questions
have been addressed by Hayes and Simon (e.g., 1974), who obtained
information about internal representations by collecting extensive verbal
protocols of problem-understanding processes. By using problems where
alternative representations were available, Hayes and Simon have also :ast
light on the question of which representation will be formed.

The Understand program (Rayes & Sisnon, 1974) is i computer simulation
of the problem understanding process for puzzle-like problems like the
Tower of Hanoi or the Missionaries and Cannibals problem -- that i3, for
problems that do not assume the subject has any prior knowledge of the
problem domain. The program matches human thinking-aloud protocols
sufficiently well to lay claims of being a good first-approximati n nodel
of the process.

Understand operates in two principal phases. In the first phase, a
language-parsing program extracts the deep structure from the language of
the instructions. In the second phase, another set of processes constructs
from this information a problem representation that is suitable as input to
a GPS-like problem-solving program. This is accomplished by (a)
identifying the objects and sets of objects that are mentioned in th.-
parsed text, (b) identifying the descriptors of those ob4 ects and the
relations among them, (c) identifying the descriptions of legal moves and
constructing move operators that fit those lescriptions, (d) identifying
the description of the solution and constructing a test for attainment of
the solution, and (e) constructing an organization of schemata that
describes the initial problem situation.

For example, after parsing the written description of the Tower of
Hanoi problem, Understand would identify pegs and disks as the relevant
sets of objects, and would notice that disks are on pegs and that disks
move from one peg to another. It would extract L'' , formatLon that only
the smallest disk on a peg may be moved, and oily to a peg where t'her.! is
no smaller disk, and would construct a test prceis for checking these
conditions. It would determine that the problem is solved when all the
disks are on (say) the third peg, and would construct a test to determine
when that condition is satisfied. Finally, it would generate a ltit
3tructure showing all the disks initially as being on the first peg. From
the evidence of protocols, and of subjects' subsequent problem-solving
behavior, this is what human solvers do also.

Problem Isomorphs. A powerful experimental manipulation for studying
problem understanding is to use variant problem instructions all of which
describe is omorphs of a single problem. Two problems are isomorphs if the
legal problem situations and legal moves of the one can be mapped in
one-to-one fashion on the situations and moves of the other. Then, if
situation S' is the isomorph of S and moves A', B', etc., are the isomorphs
of A, B, etc., and if the succession of moves A, B,... takes the one
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system from S to T, then the succession of moves A', B',... will take the
other system from S' to T', where T' is the isomorph of T.

Using a number of isomorphs of the Tower of Hanoi problem, Hayes and
Simon (1977) demonstrated that problem difficulty varied by a factor of two
to one from one class of problem descriptions (transfer problems) to
another class (change problems). Moreover, protocols and diagrams produced
by subjects showed that they were consistently using different
representations for the different classes of isomorphic problems. The
Understand program behaved in the same way, constructing different
representations for the transfer and change problems, respectively. In
only one case out of the nearly 100 that have been examined did a subject
shift from the more difficult "change" representation to the easier
"transfer" representation.

The reasons why the change problems take twice as long to solve as the
isomorphic transfer problems have not been fully elucidated. It can be
shown, however, that the tests for move legality are a little more complex
for the former than for the latter, and this additional complexity may
increase the short-term memory load on the subject who is seeking to
understand the problem instructions.

Problem isomorphs can be used to study transfer of -raining, and such
a study was conducted by Reed, Ernst, and Banerji (1974). They devised a
variant of the missionaries and cannibals problem, called the jealous
husbands problem. The latter differs from the former in that specific
husbands are paired with specific wives, and no woman may be left in the
company of men unless her husband is present. Experimental results showed
that subjects were not better at solving one of these problems if they had
previously solved the other. We must conclude that, while subjects may use
analogies to help solve problems, there is nothing automatic about the
availability of an analogy, and subjects may fail to take advantage of
analogies unless their attention is drawn to them or they are made salient
in some other way. (Experimental results showing positive transfer between
problem isomorphs for a somewhat different type of problem are discussed in
Section III.A.3.)

II.D.2. Problem Representation in Mathematics and Physics.
Typically, a problem given in a mathematics or physics text describes a
situation, including quantitative values of some variables, and asks for
the value of another variable. The given quantities correspond to the
initial state of a problem and the unknown quantity provides the goal. The
problem is presented in a natural-language text as are the instructions for
novel problems that we discussed in the previous section. The situation
with a physics or mathematics problem differs from a puzzle in that the
instructions for the former do not provide a description of the
problem-solving operators that can be used. The student is assumed to
already know the operators, based on class instruction or reading the text.
The interpretation of puzzle instructions is a representation that can be
used by a general problem-solving system such as GPS, while the
intepretation of a text problem in mathematics or physics is a
representation that can be used by domain-specific problem-solving
procedures.
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Algebra Word Problems. Word problems in algebra describe situations
that can be translated into equations, which are then solved to find the
values of unknown variables. An early model of solution of word problems
called Student (Bobrow, 1968) showed that the translation can be
accomplished mainly using the forms of sentences in the problem text, and
of course the numerical quantities, with very little knowledge about the
objects that are described. For example, in the sentence "The number of
customers Tom gets is twice the square of the number of advertisements he
runs," Student does not need to know anything about what customers or
advertisements are, but can form the equation X = 2Y 2 using the function
words "is" and "of" in critical ways.

In an empirical study of the solving of algebra word problems, Paige
and Simon (1966) found a good deal of similarity between human solutions
and those given by Bobrow's Student program. However, they found that
their more skillful subjects used an intermediate semantic representation
in the translation of the English-language problem statements into
algebraic equations. Some problems presented descriptions of situations
that were contradicted implicitly by real-world knowledge (boards of
negative length, nickels worth more than quarters, and so on). The weaker
subjects often made accurate syntactic translations of English into
equations, as Student does, even though the equations represented nonsense
situations. The abler subjects either noticed the contradictions between
the statements and their knowledge, or translated the statements
(carelessly) into equations that were not quite equivalent syntactically,
but which represented physically realizable situations.

Another difference between the abler and weaker subjects was that the
former, but not the latter, generally drew diagrams of the problem
situation that contained all the essential relations from which the
equations could be derived.

Both kinds of evidence -- the response to "impossible" situations, and
the nature of the problem diagrams produced -- point strongly to the
employment by the more competent subjects of an intermediate semantic
representation of the problem situations, rather than a direct translation
from English to algebra.

Arithmetic Word Problems. Detailed analyses of intermediate
representations have been worked out for a class of word problems in
elementary arithmetic. Riley, Greeno, and Heller (1983) and Briars and
Larkin (in press) have developed models of representation and solution of
word problems that are solved by a single operation of addition or
subtraction. Examples of the problems studied are "Jay had eight books;
he lost five of them; how many books does Jay have now?" or "Jay has some
books; Kay has seven more books than Jay; Kay has eleven books; how many
books does Jay have?"

In Riley et al.'s (1983) model, problems are represented by three
schemata that provide knowledge of basic quantitative rlationships. One
schema represents problems involving events that change the value of a
quantity, either by increasing it or decreasing it, as with losing five
books. A second schema represents problems in which two separate
quantities are considered in combination. A third schema represents
problems involving comparison between two separate quantities. (This
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classification of problems is not unique; similar but distinct
characterizations have been worked out by Carpenter and Moser, 1982; by
Nesher, 1982; and by Vergnaud, 1982.)

Arithmetic word problems are usually classified according to the
operations used in their solution, and children are often taught to look
for certain key words to decide how to solve the problems. This is
inadequate, because choice of the correct operation depends on
understanding the structure of quantities in the problem, rather than on a
single feature corresponding to a key word. For example, "altogether" is
sometimes suggested as a key word for addition, but this is not a reliable
cue, as in the problem "Jay and Kay have nine books altogether; Jay has
seven books; how many books does Kay have?"

Riley et al.'s model simulates children's solutions of word pr~blems
when small blocks are available for the children to use in solving the
problems. The model forms representations of problem texts using the
schemata of change, combination, and comparison. Based on the
representation that is formed for a problem, the model performs
quantitative actions, such as joining two sets of objects together or
taking a specified number of objects away from a set and counting how many
remaii. DiEfferent versions of the model were formed to correspond to
different levels of skill that were observed in a study of children from
kindergarten through the third grade. The versions differ in the detail
with which internal representations are formed (affecting ability to
retrieve information from earlier steps), and in their ability to perform
transformations that provide information in a form needed to make
inferences. The patterns of correct responses and errors observed in the
performance of most of the children were consistent with patterns that were
obtained in the simulation models.

Briars and Larkin's (in press) model constructs less elaborate
intermediate representations of problems, and thus relies somewhat more
strongly on procedures for inference. Briars and Larkin's model does use a
schema for representing part-whole relations among sets for some relatively
difficult problems.

Physics Problems. The knowledge structures used in simulating
solutions of arithmetic word problems are quite general, involving

relationships between quantities that children probably learn about in
their ordinary experience. In technical domains such as physics, specific
instruction is given to teach students the nature of theoretical quantitiesand the ways that they combine.

Novak (1977) constructed a program called Isaac that builds problem
representations from English problem descriptions in a domain of physics,
simple statics problems. Isaac uses schemata of physical subsystems
(levers, masses, etc.), assumed already understood by the solver, to build
up a compound schema to fit the problem at hand. Thus, it may assemble a
wall schema (surface), a floor schema (surface), a ladder schema (lever),
and a man schema (mass) to represent a situation of a man standing on a
ladder that is leaning against a wall, assigning to each component
appropriate numerical quantities and appropriate connections with the
others.
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Models such as Riley's for arithmetic word problems and Novak's for
physics problems are based on the idea that understanding a problem
requires schematic knowledge regarding the quantities in problem
situations. The schemata provide knowledge of ways in which quantities are

related to one another. These quantitative reLations are not expressed
adequately in algebraic formulas that are taught in physics and other
quantitative sciences, although of course the formulas are based on the
quantitative relations and students must be able to choose formulas and
assign values of their variables correctly on the basis of the problem
representations that they construct.

The distinction between knowledge of a formula and knowledge of

quantities and their relations is illustrated in experiments conducted by
M4ayer (1974). The experiments were instructional SLVdLes, *o'icerned with
different methods of teaching the formula for binomial probability. 'ne
group of subjects received instruction that emphasized c-ilculstion,
presenting components of the formula with explanations of te calculation
steps, practice exercises, and relatively brief explanations of the
referents of terms in the formula. Another condition emphasized the
information needed for students to acquire schematic knowledge, presenting
definitions of terms and explanations of relevant concepts such as the
number of combinations and the probability of a single sequence of outcomes
before calculation exercises were presented. Tests that were given
following instruction included a variety of problems, including some that
involved direct application of the formula, and others that required more
interpretation. The latter group included word problems, problems that
could not be solved because of inconsistent or insufficient information,
and problems requiring use of a component of the formula rather than the
complete formula. The subjects whose instruction emphaslzed the formula
excelled on the problems involving direct use of the formula, but the
subjects given more conceptual instruction were more successful on the
problems requiring more interpretation.

Several studies have compared performance of physics students with
performance of expert physicists to identify some of the components of

knowledge that characterize more advanced problem solvers. Three of the
differentiating characteristics that have heen identified are (1) use by
experts of abstract physics principles in representing problems as well as

Ln providing methods )f solution; (2) strong organization of physics
knowledge including knowledge of relationships among principles and
recognition of complex patterns of problem features; and (3) integration
of physics knowledge with general concepts and reasoning proc-esses.

Experts' use of abstract physics :on1cepts was shown in experiments by
Chi, Feltovich and Glaser (1981), who gave subjects a set of 24 physics
textbook problems and asked the subjects to sort the problems into groups.
Groupings formed !y advanced graduate stiLdents were based primarily on
abstract principles, such as conservation of energy, while groupings formed
by subjects who had completed a single course in mechanics were much more
likely to be based on superficial features, such as the kinds of objects
(pulleys, levers, etc) that were mentioned in the problems.' Chi et al.
also found that abstract physics principles were used by experts when they
gave protocols reporting their thoughts and hunches while deciding on a
"basic approach" to solving the problem. Use of abstract principles was
included in a computational model developed by McDermott and Larkin (1978)

- -
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which simulates representation of textbook problems by an expert. Vhe
representation of a problem includes a diagram that represeats major
components and relations, and then an abstract representation with
theoretical entities such as forces and energies and relations among these
based on general principles.

Instructional materials have been designed by Reif and Hell0'r '1131)
that provide training for beginning students in a procedure for
constructing abstract representations of problems. Reif and Heller's
instruction provides an explicit method for arriving at a correct problem
representation like that used by experts (although the representational
method is not patterned after the experts' performance, in whLch the

process of forming the representation is rapid and apparently automatic,
without easily discerned intermediate steps).

Larkin and Reif (1979) also designed instruction to streogtheen
students' knowledge of relations among physics principles and their ability
to apply principles in solving problems. The instruction grouped
principles on a chart, and suggested to students that when certain
principle are applied, it is generally useful to consider the application
of other related principles. Qualitative analogies were also used, such as
a fluid-current analogy for electric current and a height analogy for
potential. Students who received this instruction were more successful in
solving test problems than other students who only received instruction in
the principles, without the organization and qualitative analogies.

Individuals with expert knowledge in a domain have been shown to have
superior skill in recognizing complex patterns of information in their
domain of expertise. Domains in which this phenomenon has been
demonstrated include chess (Chase & Simon, 1973), Go (Reitman, 1q76),
electronics (Egan & Schwartz, 1979), computer programming (McKeithen,
Reitman, Ruiter, & Hirtle, 1981), and radiology (Lesgold, Feltovich, Glaser
& Wang, 1981). (We discuss experiments on chess perception in Section
III.B.2.) Highly developed skill in pattern recognition may provide an
explanation for a finding that has been obtained in several studies, namely
that expert problem solvers tend to work forward from the given information
to the unknown, while novices tend to work backward from the unknown,
searching through a series of subgoals for formulas that can provide the

needed quantities (e.g., Simon & Simon, 1978). The conditions for applying
formulas involve relatively complex patterns of known values of variables,
which experts probably have learned to recognize directly, thus avoiding
the more laborious searches that novices conduct (Larkin, 1981). A result
supporting this view was obtained by Malin (1979), who found that subjects
were more likely to adopt a forward-search strategy to solve problems if
the formulas that they were using had an obvious organization than if the
formulas did not fit together in any evident way.

A third characteristic of experts' knowledge is that their
domain-specific knowledge (e.g., in physics) is integrated with powerful
general concepts and procedures for making inferences. An example is in
protocols obtained by Simon and Simon (1978) from a novice and an expert
subject on problems from a high school physics text. One problem was: "An
object dropped from a balloon descending at four meters per second lands on
the ground ten seconds later. What was the altitude of the balloon at the
moment the object was dropped?" The novice subject's solution had the
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properties of means-ends analysis, using the formula s = vot + .5at 2. In
contrast, the expert calculated a quantity that he called "the total
additional velocity" by multiplying the time by the gravitational constant

(i.e., 10 X 9.8 = 98), added that to the initial velocity to obtain the
final velocity (98 + 4 = 102), took the average velocity
((4 + 102)/2 = 53), and found the distance by multiplying the average
velocity by the time of ten seconds (53 X 10 = 530 meters). The expert
apparently had a representation of the problem in terms of physical
quantities that enabled him to apply general procedures such as computing

components of velocity and taking an average, whereas the iovice was
restricted to using the formulas that were provided. Relations between

technical knowledge ind general concepts have been investigated
theoretically by deKleer (1975) and by Bundy (1978), who developed models
of physics problem iolving that combine general knowledge about the motion

of objects on surfaces with knowledge of formulas in kinematics, and by
Larkin (1982) who studied the use of spatial information in solution of
hydrostatics problems.

Understanding of Structure and Principles. Integration of
problem-solving knowledge with general conceptual structures also has been
used to characterize structural understanding, like that discussed by
Wertheimer (1945/1959), and understanding of general principles, including
the relation of abstract properties of number (cardinality, order,
one-to-one correspondence) to children's cognitive procedures for countlng.

Understanding of structur- has been iivestigated theoretically by
Greeno (1983) using a problem discussed by Wertheimer (1945/1959), proof of
the congruence of vertical angles. Wertheimer distinguished between i
relatively mechanical process for generating the proof, involving use of
algebra without cognizance of spatial relations in the problem, and i nore
,meaningful process based on part-whole relations between pairs o' i.igles
and operations of removing a part that is included in two whole angles.
Greeno's model simulates the more meaningful process by using a schema that
represents part-whole relations in a general way and applying
problem-solving operators that make Inferences based on the part-whole

structure. Data were available in the form of protocols from students

working on the vertical-angles problem after they had learned to solve

other problems with similar part-whole structure involving line segments.
The model simulates learning in the line-segment situation. When the
learned problem-solving operators are integrated with the part-whole
schema, the model can apply its knowledge when it encounters the
vertical-angles problem. The model thus provides an explanationi for
transfer that occurs between problems in different domains, with a
characterization of structural understanding based on schematic
representation. An account of transfer based on acquisition of a schema in
a different problem domain is discussed in Section I1T.A.I.

A similar idea was used by Resnick, Greeno and Rowland (iescrLbed by
Resnick, 1983) in analyzing children's understanding of a procedure for
subtraction with multidigit numbers. According to their analysis, children
who understand the procedure have a representation that Includes general
relations, such as part-whole relations between quantities represented by

individual digits and the quantities represented by whole numbers, and
constraints such as requiring the quantity represented by a number to
remain unchanged when borrowing is used. The analysis focused on knowledge
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acquired in meaningful instruction (cf. Brownell, 1935), in which children
were shown the correspondence between subtraction wLth numerals and an
inalogous subtraction procedure using blocks. Resnick et al.
hypothesized that the understanding was achieved through acquisition of a
schema, involving general part-whole relations, that was general enough to
apply to both of the domains: the numerals and the blocks.

Efforts also have begun to develop rigorous and explicit

characterizations of knowledge that includes implicit uinderstanding of
general principles (cf. Judd, 1908; Piaget, 1941/1952). A representation
of preschool children's .inderstaiding of principles of counting has been
Formulated by Greeno, Riley, and Gelman (in press). Greeno et al.'s
analysis was based on evidence presented by Gelman and Gallistel (1978)
that young childre- have significant understanding of principles such as
cardinality, order, and one-to-one zcrrespondence, rather than simple
"mechanical" knowledge of counting procedures. The evidence includes
performance in novel situations, such as being asked to evaluate counting
performance by a puppet that sometimes makes errors, and counting with a
novel constraint of associating a specified numeral with a specified
object. Greeno et al. proposed an analysis of conceptual competence to
represent children's implicit understanding of principles. Conceptual

principles are represented as schemata that incorporate constraints on
correct counting and express general properties such as the part-whole
relation between the counted objects and the whole set. The conceptual

principles are related to procedures of counting by a set of planning

rules, which permit derivation of procedures from the schematic
representations of the principles.



Page 63

11l. Problems of Design and Arrangement

Problems that we discuss in this section require finding an
arrangement of some objects that satisfies a problem criterion. Simple
examples include puzzles in which the objects are given in the problem
situation. For example, an anagram presents some letters, and tne task is
to find a sequence of those letters that forms a word. in more comple:
cases, the problem solver provides the materials based on his or ner
knowledge. Examples are composing an essay and writing a computer program.

The problem space in a problem of design includes tne objects that are

given or are in the problem solver's knowledge. The space of possible
solutions is the set of arrangements that can be forned witn tne available
objects. The problem goal is to construct an arrangement tnat meets a
criterion, which may be either specific or nonspecific. -n anagram problem
has a specific criterion: the sequence of letters should form a word. A
written composition has several criteria that are less specific, sucn as
clear exposition, persuasive argument, and an entertaining style. Aany
problems of design nave a mixture of specific and nonspecific criteria.
For example, a problem in computer programming can nave a criterion of a
specific function to be computed, and less specific criteria sucn as
efficient computation and clarity of structure.

An important factor in solving problems of design is tne satisfaction

of constraints. The metaphor that best characterizes typical solution
processes is "narrowing down the set of possibilities" rather tan
"searching through the set of possibilities." Aitnouga it is entirely
possiole, as we snail see, to describe the solution process as a searcu,
the main steps in this search lead to the acquisition of niew c-owledge tnat
rules out a wnole set of problem states as potential solutions -- a
wholesale approach to tne reduction of uncertainty. Jse of constraints is
importanL beause tne set of possible arrangements is isually very large,
compared to rte set of arrangements tuat satisfj tle proolea criterion.

Problems of design are differentiated from :rans-inatlon proms,
discussed in Section IL, in tne nature of tne goal And rne set of
alternatives that are considered. In a transformation problem sucn as the
Tower of Hanoi or finding a proof for a tneorem, tue goal is a specific

arrangement of the problem objects, sucn as specifi Location o all the
disks in the Tower of danoi or a specific expression to be proved in logic.
Thus, the question is not wnat to construct, is it is in a problem ot
design, but how the goal can be constructed 4it:. the limited set of
operators that are availaole. The searcn or toe solution o: a
transformation proulems often examines one proiLem situation after another,
gaining cnowledge that helps point the direction of toe search toward tne
goal situation.

Viewed in another way, however, transformation problems and problems
of design are very similar in structure. The solution of a transformation
problem is a sequence of actions that changes te initial problem situation
into the goal. The solution process can be considered as construction of
an appropriate sequence of actions, involving search in the very large
space of possible sequences. This view emphasizes similarities between
problems of transformation and problems of design, wnicn are especially
apparent when solution of transformation problems includes planning.
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This section discusses design problem solving in four parts. In
Section III.A we discuss two simple problems of forming arrangements:
cryptarithnmetic and anagrams. These provide paradigmatic cases for the
analysis of problems of search among sets of possible arrangements.
Section 111.3 discusses problems in which an arrangement of objects is
already presented, and the task is to modify the arrangement according to
some criterion. These problems include classical studies of matchstick
puzzles by Katona (1940), and selection of moves in board games where the
goal of a player is to strengthen his or her position. In Section ILL.C we
discuss so-called "insight" problems, which depend on finding a successful
formulation or representation of the problem. Finally, Section III.D
discusses several more complex problems of composition and design,
including composition of essays and musical pieces, design of procedures,
and formation of administrative policies.

IL.A. Simple Problems of Forming Arrangements

First, we discuss cryptarithmetic problems, analyzed by Newell and
Simon (1972), in which digits are arranged to form a correct addition
problem, constrained by a set of letters for which the digits are to be
substituted. Then we discuss anagram problems, where letters are to be
arranged to spell a word.

II1.A.1. Cryptarithmetic Problems. Cryptarithmetic problems are best
explained by exhibiting one of the best known examples:

DONALD

+ GERALD

= R o B E R T
The task is to replace each distinct letter in the array with a distinct
digit, from 0 to 9, the same digit replacing a given letter in all its
occurrences, and no digit being used for more than one letter. To make the
problem easier, the solver is usually told that D = 5.

The cryptarithmetic task was apparently first studied by Bartlett
(1958), who reported some retrospective protocols of subjects in his book
on thinking. Subsequently, Newell and Simon (1972) carried out extensive
analyses of thinking-aloud protocols for cryptarithmetic problems. Fron
this work, we now have a rather clear picture of how human subjects
approach such problems.

There are 10! = 3,628,800 ways of assigning ten digits to ten
letters. Most subjects, without calculating this number, realize that it
is very large, and do not even attempt to solve the problem by maKing
random assignments and testing them. Instead, they look for information in
the form of constraints that permit values to be assigned to particular
letters at once. If that can be done, the number of possibilities declines
rapidly. Simply giving the information that D - 5 already reduces the
possible solutions by a factor of ten, that is, to 362,880 -- still a large
numberl

The constraints in cryptarithmetic problems that sometimes make
systematic elimation possible derive from the fact that each column of the
literal array must be translated into a correct example of addition
(subject to carries into and out of the column). Thus, as soon as it is
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known that D - 5, the sixth column can be processed to infer that T
necessarily equals 0, and that there is a carry of I into the fifth column.
This single inference reduces the remaining set of possible assignments to
40,320, a further reduction by a factor of nine.

Similarly, consideration now of the second column allows the subject
to infer that E is equal to 0 or 9. Since 0 has already been preempted by
T, we have E = 9, reducing the possible assignments to 5,040. A few more
steps of reasoning, based on information contained in columns one and five,
allow the subject to infer that R = 7, reducing the possible assignments to
720. An inference on column four gives A = 4 (120 possibilities remain);
and an inference on column five gives L - 8 (leaving only 24
possibilities). From column one, G = I (leaving 6 possibilities), and now
the remaining digits must De assigned to N, 0, and B, a task easily carried
out by trial and error.

Newell and Simon (1972) obtained thinking-aloud protocols of subjects
solving cryptarithmetic problems. Problem behavior graphs were
constructed, based on the protocols, and a detailed model of one subject's
problem-solving processes was developed in the form of a production system.
(A discussion of this methodology was given in Section II.A.l.) The model
includes several productions that represent a problem-solving strategy.
These productions set goals to examine a column or to examine occurrences
of a variable, make decisions that a value can be assigned to a variable or
tnat a candidate value should be cested, and perform other general
functions. There also are a few dozen productions that represent the
operation of specific processes. One, called Process Column, contains 26
productions; others are considerably simpler. The productions in this
process examine the letters in a column and use any information that nas
been gathered about them to make further inferences. The subject's
performance, recorded in a problem behavior graph, was compared in detail
with the model, and approximately 80X of the protocol units were explained
by processes in the model.

Protocols obtained from five subjects were consistent in their general

characteristics of problem-solving processes. They also revealed
significant individual differences, and these can be interpreted as
differences between the problem spaces of the individual problem solvers.
All subjects made use of their Knowledge of arithmetic in order to mae
inferences, and subdivided the problems into subproblems involving the
columns. There w.:- important differences among subjects in their
strategies for selec.ting columns to j ork on, and in their use of specific
constraints for making inferences.

For an efficient solution of this problem, subjects must use a search

heuristic of attacking the most constrained columns first, for the most
information can be extracted from a column in which the assignment of one
or more letters has already been made, or in which the same letter occurs
twice. Some subjects used this column selection heuristic immediately;
others began by attacking the columns systematically, from right to left,
and only later abandoned that strategy for the more powerful one. Subjects
who did not use the heuristic usually failed to solve the problem.
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Another factor that influenced success was use of specific
constraints. The problem spaces of some subjects included rules of parity.
For example, one of the inferences needed to conclude that R - 7 is that
whatever R's exact value, it must be an odd number. This is inferred by
processing column 5, containing two L's whose sum must be even, and the
carry of 1, making the total an odd number. Subjects whose problem spaces
did not include the parity constraints generally were unable to solve the
problems that they worked on.

Even subjects who used the available heuristics and constraints for
efficient elimination found the DONALD + GERALD problem difficult. Most of
their difficulties arose from one or both of two sources. One such source
is the making of conditional assignments (e.g., "suppose that L is I").
Then, if the assignment was wrong and they arrived at a contradiction, they
may have been unable to remember which prior number assignments they had
inferred definitely and which they had postulated conditionally. Another
source of difficulty involved mistakes made mistakes in drawing inferences,
resulting in incorrect assignments. For example, some subjects drew from
the fact that R = 7 the conclusion that L = 3 (with a carry from the sixth
column), ignoring the possibility that L might be 8, with a carry into the
fourth column. When L - 3 led to a contradiction, they often had great
difficulty in discovering the cause.

Errors of inference are forms of the errors of syllogistic reasoning
that we discuss in Section V. In the particular example just cited,
subjects appeared to infer from the premise "if L = 3 then R = 7" and the
premise "R = 7" the conclusion, "L = 3," an example of the classical
fallacy of inferring the antecedent from the consequent. They did not
notice that L = 8 also implies R = 7. Thus, the cryptarithmetic task draws
upon reasoning processes as well as upon search processes.

Nothing in the behavior of subjects solving cryptarithmetic problems
suggests that they decide consciously to treat it as a "constraint" problem
rather than a "search" problem. In fact, their behavior can ae described
as a search through the space of possible assignments, and Newell and
Simon's analysis used this point of view. What distinguishes it from
search in many other problem spaces is that the problem is factored into
ten separate but interdependent searches for the individual assignments.
Success in each one of these searches constrains the problem space by

reducing the number of alternative possibilities for the remaining
assignments, and by providing additional information about some of the
columns. Rence, it is not dissimilar from an ordinary search where each
step of progress provides clear feedback of information that the right
track is being followed.

III.A.2. Anagrams. Anagrams are strings of letters that can be
rearranged to form words, for example, thgli -- light. The problem space
of an N-letter anagram contains N! possibilities, hence increases rapidly
with N. The solution process can be viewed as a search through this space
of permutations of the letters, but most persons presented with an anagram
use various heuristics to speed up the search. One of these is to pick out
initial combinations of letters that are pronounceable (e.g., ti or li in
the example above), and then try to complete a word with the remaining
letters. Imposing the condition of pronunciability upon solution attempts
may restrict the search space considerably.
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The course of the search also is much influenced by the structure of
long-term memory. For example, if there are two possible solutions for an
anagram, the one corresponding to the more frequent and familiar word is
likely to be found by a large majority of subjects. Moreover, the solution
may be primed by presenting the word to the subject, or a semantically
related word, some time before the anagram task is taken up (Dominowski &
Ekstrand, 1967).

Perceptual factors may affect performance on anagram tasks. Anagrams
that are already words (e.g., forth --- froth) or are easily pronounced
(e.g., obave -p above) take longer to solve than those without these
properties (Beilin & dorn, 1962). This finding is consistent with Gestalt
principles that "meaningful" forms resist restructuring. Gavurin (1967)
found a correlation of .54 between success in solving anagrams and scores
on a standard test of spatial abilities. When the subject was provided
with tiles that could be rearranged physically, this correlation
disappeared, indicating that the original relation had to do with
perceptual abilities to operate on visual or auditory images.

It is easy to induce a problem-solving set in anagram solving by
presenting subjects with anagrams that all represent the same permutation
(say, 5 4 1 2 3) of the letters. If an ambiguous anagram (one admitting
several solutions) is then presented, most subjects will find the solution
requiring the same permutation rather than the alternative solution (Rees &
Israel, 1935).

Thus, we find in subjects' behaviors on the anagram task a combination
of search (generating possible solutions) and constraint satisfaction
(rejecting non-pronounceable initial segments). The process of alternative
generation, in turn, is strongly influenced by long-term memory
organization and priming, and by subjects' skills in forming and holding in
STA the permutations of the stimulus.

III.B. Problems of Aodifying Arrangements

In the problems discussed in Section III.A, arrangements are formed
"from scratch;" materials are provided, and the problem solver must put
them together in a way that satisfies a specified criterion. Now we
discuss problems in which an arrangement of objects is presented, and the
task is to modify the arrangement. We will discuss a laboratory problem of
this kind, the matchstick problem studied by Katona (1940), and problems of
choosing moves in board games such as chess and Go. Perceptual processes
play an important role in solution of these problems, which involve
recognition of general features and complex patterns in the arrangements
that function as cues for the selection of operations and strategic plans.

These problems combine features of the transformation problems
discussed in Section II with features of problems of design. Like design
problems, a goal is specified as a general criterion rather than a specific
state that the problem solver tries to produce. At the same time, in these
problems there are significant restrictions on the operators that can be
used to change the situation. Therefore, the problems can be
conceptualized either as search in a space of possible arrangements or in a
space of possible sequences of moves.

• " - . .. .- - - - - I . .
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Figure 10 here

III.B.I. Matchstick Problems. One of the matchstick problems used Dy
Katona (1940) is shown in Figure 10. The 16 matches form five squares;

the task is to move exactly three matches in such a way that the matches
form only four squares, but all matches are used as sides of squares.

Katona tested subjects under three conditions: a rote learning condition
(subjects were shown a specific solution, and required to learn it), a
condition in which a logical condition for the solution was taught (that in

the solution, each match was a side of one and only one square), and a
condition in which a heuristic for solving the problem was taught ("You

need to open up the figure").

The subjects learned the solutions, then were tested on transfer tasks

(different initial arrangements of the matches and different numbers of
squares). Two weeks later they were invited back and tested for their

memory of the solution. Differences in the ease of learning the solution
were minimal, with the rote solution being learned most rapidly. With
respect to transfer and retention, however, the "logical" and "heuristic"
solutions far outshone the rote solution, and the heuristic solution scored
slightly better than the logical. Katona concluded from this evidence that

problem-solving knowledge and skills are better available for transfer and

better retained when the learning is meaningful than when it is rote.

The experimental manipulations leave implicit, however, the

theoretical import of the term "meaningful". Why does meaningful learning
facilitate retention and transfer, and why is the "heuristic" form of the

instruction somewhat superior to the "logical" form?

With respect to transfer and retention, meaningful learning involves
the same issues as structural understanding, discussed at the end of
Section II.D.2. Transfer is facilitated because with more meaningful
instructions, subjects acquired Knowledge that could be applied more

generally -- in particular, to the new problems presented in the test as

well as the problems used in training. It is easy to see why this would
occur; the meaningful instructions can be applied to matchstick problems

generally, while a specific solution sequence only applies to a single

problem.

With respect to retention, it may be that meaningful forms of

instruction provide more redundancy, hence more opportunity to recover from
partial forgetting. The general principles of single vs. double function

and of loosening or condensing the figure are constraints that can be used
to limit search for information in memory, or to reconstruct solutions that
are only partially remembered.

The difference between the two meaningful procedures appears to derive

from the distinction between generators and tests. The instruction to
"open up the figure" provides a constraint for selection of an operator --

it suggests something to do, however vague, related to a general property
of the figure that can be perceived. The rule, "each match must be a side

of one and only one square," is a constraint on solution arrangements. It
provides a test that can be applied to an attempted solution, but does not
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Figure 10. A matchs-Lick problem used by Katona (1940).
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suggest what attempt to make to produce the solution in the first place.
In fact, the matches that are actually moved to solve the problem are not
the double-function matches but matches that already lie on the side of
only one square. In this situation, at least, the knowledge tnat
facilitates solution more effectively increases the selectivity of the move
generator, rather than the selectivity of candidate solution states.

Katona noted that the heuristic of opening the figure or closing gaps
uses a feature that is important in the perception of form, the Gestalt
principle of good continuation. Attending to that feature and considering
moves to change an arrangement with respect to it constitutes a general
strategy for solving matchstick problems.

III.B.2. Chess and Go. Board games present problems tnat have the
same general form as matchstick problems. An arrangement of objects is
presented -- the current situation in the game -- and a player has the task
of selecting a move or a move sequence. Sometimes the criterion for a good
solution is quite definite (e.g., "white to mate in four moves"); more
often, it is quite general, involving a goal to achieve a stronger
position. Recent experiments have compared the performance of individuals
who differ in their level of skill. The results of these experiments show
the importance of knowledge for recognizing large numbers of complex
patterns that occur during games. The relation of this complex perceptual
knowledge to strategies of play has been analyzed in recent theoretical
studies.

In complex games, as in other domains in which individuals become
expert, problems that would be difficult or impossible for novices are
often solved "instantly" by experts -- that is, in a few seconds. For
example (deGroot, 1965), when a chess grandmaster is presented with a
position from an actual game with which he was previously unfamiliar, and
is asked to recommend a move, he will usually be able to report a good
move, often the best move, in five seconds or less. In a "blitz" game,
where he is required to move within ten seconds, he will probably be unable
to play grandmaster-level chess, but will achieve master level. With a
high level of success, he will be able to play 50 or more opponents
simultaneously, taking only a few seconds for each move. When experts are
asked how they solve problems so rapidly, they may reply, "I use
intuition," or "I use my judgment."

The nature of this "intuition" and "judgment" has been clarified by
experiments on skill in chess by deGroot (1965) and Jongman (1968),
repeated and extended by Chase and Simon (1973), and on skill in Go by
Reitman (1976). A chessboard with a position from a game (containing
perhaps 25 pieces) is shown to subject for five to ten seconds. The
subject is then asked to reconstruct the position. Chess grandmasters and
masters can perform this task with 90 per cent accuracy. Ordinary players
can replace only five or six pieces correctly (20 to 25 per cent accuracy).
In a second condition the task is the same, except that the pieces are now
arranged on the chess board at random, rather than in a pattern that could
have arisen in a game. In this condition, the performance of masters falls
to the level of that of ordinary players -- both can replace, on average,
only about six pieces. This second part of the experiment demonstrates
that the chess masters do not have any special powers of visual imagery.
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Reitman's (1976) study of skill in Go had similar results. Go is a
game of territory played on a 19 X 19 grid. The pieces are round "stones"
that are all the same except, of course, that they are differant in color
for tne two players, blacK and wnite. An experienced subject, very strong
for a non-Oriental but not as strong as a professional player, was able to
reproduce 66/. of the pieces of meaningful patterns, compared to 39Z for a
beginner wno had played about 50 games. On random patterns the players
replaced 30/ and 25., or an average of five to seven stones.

(This experimental procedure nas now been used to study
pattern-recognition abilities of experts in several other domains; see our
discussions of programming in Section III.D and electronics in Section
IV.U. )

The behavior of the chess and Go experts in tne perception and memory
task can best be explained as a function of their chess and Go experience.
As a result of thousands of hours of time spent in looking at game boards,
they are familiar not only with tne indivilual pieces, but with many
configurations of three, four, or more pieces that recur time and again in
games. For example, a configuration known as a "fianchettoed castled Black
King's position" occurs in about one out of every ten games between expert
cness players. This configuration is defined by tne positions of six
pieces. It has been estimated (Simon & Barenfeld, 1969; Simon &
Gilmartin, 1973) tnat a chess master has stored in long-term memory not
fewer than 50,000 familiar patterns of this Kind. This number is
comparable to the 30,000 words in the vocabulary of a typical college
graduate, or perhaps the total number of human faces a gregarious person
learns to recognize over a lifetime.

Wnen a chessmaster is confronted with a chessboard on which the pieces
are arrayed in a "reasonable" 4ay, he can store tnis information in
short-term memory in a half dozen or fewer "chunKs" -- familiar

configurations. The ordinary player, or the cnessmaster confronted with a
randomly arrayed chessboard, must store the information piece by piece,
hence can nold the positions of only about a nalf dozen pieces in
short-term memory.

The skill that the expert acquires does not simply consist in being
able to recognize familiar stimuli or configurations of stimuli. As
deGroot showed, the recognition of perceptual features on the chess board
reminds the grandmaster of moves that are potentially good when those
features are present. Indeed, we snould expect that the expert's knowledge
for pattern recognition is integrated with strategic Knowledge so that the
patterns an expert has learned to recognize are those that are relevant to
choices of moves and plans in game situations.

The importance of game strategy in perception and representation of
complex patterns was shown in an experiment by Eisenstadt and Kareev
(1975). Go and Gomoku are games with entirely different rules, but are
played on the same board, and with the same kinds of pieces. Two groups of
subjects, who Knew how to play both games, were shown the same patterns of
stones on boards, but in the one case were told that the patterns were from
a game of Go, 'a the other case from a game of GomoKu. They were
subsequently asked to recall the patterns. The subjects in the first
condition had better recollection of the pieces tnat were critical to
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selecting the correct move in the Go position, while the subjects in the
second condition tended to recall those that were critical to selecting the
move in the Gomoku position. Thus, in the face of a complex stimulus
situation, attention to a particular task will determine the sequence in
which information is extracted from the stimulus, and the patterns in which
it will be organized.

Specific Knowledge structures that integrate strategic knowledge and
knowledge for recognizing patterns nave been studied by Wilkins (1980), in
a model of choosing moves in chess, and by Reitman and Wilcox (1978), in a
model of playing Go.

Wilkins' (1980) model represents board positions by recognizing
concepts, such as Attack and Safe, based on relations among pieces. The
model uses schemata that correspond to the concepts in proposing and
evaluating plans. In formulating a plan, a concept such as Safe or
Defend-Threat can be set as a goal; tne schema for each concept includes
conditions that are required to satisfy the goal. The model's strategy of
using proposed plans to guide its search restricts the set of moves it
considers, enabling relatively thorough evaluations. The model is
successful in solving problems of choosing moves in middle game positions
that are difficult enough to be used in a standard chess textbook.

Reitman and Wilcox's (1978) model simulates representation of board

positions and changes of board positions in Go. The model forms a
multilivel representation with low-level units such as strings and chains
of stones, and higher-level units called groups and fields involving
collections of points and their surrounding stones. The representations
include features that are relevant to Go tactics, such as the stability of
a group of stones. Perceptual activity is organized according to several
structures including lenses, which monitor changes on the board relevant to
relations between groups of stones, and webs, which monitor changes on
radii and circumferences around groups. The model's capabilities for
representation, combined with some relatively low-level processes for
selecting moves, is similar to human player with experience of playing 40

or 50 games.

The ability of experts to recognize complex patterns of information
related to a highly integrated structure of actions has been found in other
domains in which expertise has been analyzed. We have discussed the
importance of knowledge for representing problems in physics in Section
I1.D. Analyses that we discuss in Section IV.D of xnowledge for expertise
in medical diagnosis and electronic troubleshooting have led to similar
conclusions. A conjecture that is reasonable on present evidence is that
high levels of expertise generally require a reportory of tens of thousands
of perceptual "chunks" relevant in the domain. In domains where the
minimal time required to become a world-class master has been measured, the
estimate turns out consistently to be about a decade (Hayes, 1971; we
discuss this finding for musical composition in Section III.D.1).
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1LL.C. Construction Tasks and Other Insight Problems.

Much research attention has been given to problems in which some
physical device or arrangement is required, often to satisfy a functional
criterion. An example is Dunc~er's (1935/1945) famous "tumor" problem. A
patient has a stomach tumor, wnich is to be destroyed by radiation without
damaging the surrounding healthy tissue. How is it to be done?

The source of difficulty in construction problems is rather different
from tne problems discussed in Sections III.A and 111.B, wnere difficulty
is caused primarily by the large number of possible solutions. The tumor
problem, and other "insight" problems, are difficult primarily because most
of tne candidate solutions that people thinK of are ruled out by the
constraints of the problem. In the tumor problem, for example, one cannot
simply direct tne rays to the tumor, because that would destroy all the
tissue along their path; one cannot open a path to the tumor because the

surgical procedures would cause intolerable damage, and so on. The

"textbooK" solution of the tumor problem is that the tumor should be
irradiated from many different angles, and hence via many different paths
througn the surrounding tissue. Then a large quantity of radiation can be

concentrated on the tumor dnile each path of surrounding tissue is
subjected to only a small fraction of that amount.

Solving the tumor problems and similar insight problems often depends

on finding a way to represent the problem so that the solution becomes
"obvious". Achievement of such a representation, corresponding to a moment

of insignt, is a phenomenon of great interest, especially in relation to
issues of cognitive organization in Gestalt psycnology. In problems sucn
as cryptarithmetic and anagrams, the probLem space is easily constructed,

and problem-solving activity consists of search in the set of possibilities

that arise in that space. In contrast, in insight problems such as the
tumor problem, the problem solver's initial representation usually provides

an inadequate problem space, one in whicn a solution aill not be found.

Problem solving involves a construction of several problem spaces, with

discovery of factors that make each of them inadequate, until a successful

representation is found. Processes of problem representation, discussed in

Section II.0, thus play a central role in solution of these problems of
construction. The process can be characterized as a searcn, where the

possibilities are alternative ways to represent the problem. However, the

usefulness of such a characterization is limited unless the set of
alternative representations can be specified more definitely than we are
able to at present.

Duncker (1935/1945) emphasized the demand, the condition to be met by

the problem solution, as the cnief source of solution proposals. The

initial proposals are not unmotivated, but they are faulty in not attending

to all the conditions a solution must meet. False analogies may produce
inadequate solutions because the analogy does not match, on crucial
dimensions, the actual situation. At the same time, DuncKer stressed that
the proposals are not produced by simple association (page 3):

In short, it is evident that such proposals are anything but

completely meaningless associations. Merely in tne factual situation,
they are wrecked on certain components of the situation not yet known

or not yet considered by the subject.

.. . .I E ..
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Occasionally it is not so much the situation as the demand, wnose
distortion or simplification maces the proposal practically useless.

By constructing a taxonomy of correct and inadequate solutions co the
tumor problem, Duncker showed now the solution generation process can be
understood as a process of means-ends analysis. tLis taxonomy can be
depicted in outline form:

Treatment of tumor by rays without destroying healthy tissue
Avoid contact between rays and healthy tissue

Use free path to stomach

Use esophagus
Remove healthy tissue from patn of rays

Insert a cannula
Insert protective wall between rays and tissue

Feed substance that protects

Displace tumor toward surface
By pressure

Desensitize the healthy tissue
Inject desensitizing chemical
Immunize by adaptation to weak rays

Lower intensity of rays through nealLthy tissue
Postpone full intensity until tumor is reacned
Use weaK intensity in periphery, strong near tumor

By use of lens

DuncKer described the solution process as successive development or
reformulation of the problem. Both worcing forward and working backward
may contribute to the process. Seeing a stick may give a chimpanzee the
clue to obtaining a banana that is out of reach. Alternatively, the
banana's being out of reach may lead the chimpanzee to look for objects
that could De used to reach it (cf. Kohler, 1929). Mistakes may also call
attention to features of the problem situation that must be incorporated in
the solution -- hence may lead to new solution attempts.

From the idea that problem solution depends on an appropriate
formulation, it would be expected that hints could be used to maKe problems
significantly easier. One experiment on the effect of hints used a problem
of constructing a hatracK, invented by Maier (1945). Two sticks and a
clamp were given, and the hatracK could be constructed by clamping the
sticks togetner so they could be wedged between the floor and the ceiling.
Subjects usually began by placing one stick on the floor, clamping the
other stick to it vertically, or in an X or inverted V shape with one end
of each stick resting on the floor. Neither of these structures is stable.
If the experimenter said, "In the correct solution, the clamp is used as
the coat hanger," solution was facilitated somewhat, mainly by reducing
attempts with one sticc lying on the floor. If the experimenter said, "In
the correct solution the ceiling is part of the construction," solution was
facilitated more strongly, with reduction both of attempts that have one
stick on the floor and of attempts that have one end of each stick on the
floor (Burke, Maier & Hoffman, 1966).
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A potential source of problem solutions is analogy with similar
problems. Gick and Holyoak (1980) gave Duncker's tumor problem to subjects
some of wnom had studied a story in whicn a fortress is taKen by a
converging attacK. The subjects wno were familiar with the military
problem were more successful than control subjects in solving the tumor
problem. An important factor was use of an instruction that tne story
might provide a useful nint for solving the problem. With the hint, most
subjects found the convergence solution to the tumor problem, but without
the hint only aoout one-half as many subjects found that solution, even
tnough they had read the story and recalled it in a test.

In a subsequent study, Gick and Holyoa& (1983) examined conditions
favoring spontaneous use of an analogy. There was little effect of asking
subjects to summarize the military story, rather than to recall it, nor did
giving a verbal statement or a diagram snowing the convergence principle
notably increase subjects' use of the analogy. owever, more solutions
were given by subjects wno read two stories involving convergence,
summarized both of tnem, and discussed ways in which the stories were
similar. Gict and iolyoa. concluded that subjects acquired a schema with
tne idea of convergence represented in a general way, and that use of sucn
a schema is more ii~ely than use of a specific analogous problem. (Recall
the use of a similar hypothesis in interpreting learning a subtraction
procedure with understanding, based on an analogy with Dloc~s, discussed in

Section lr.D.2.)

Duncker (1935/1945) also studied problems that required subjects to

construct or assemble some item out of potential components that were
provided. He showed that the problems could be made difficult by
presenting one of the components in such a way that it was conceptually
"unavailable" for its required function. In one problem, for example, the
ouilding materials were a candle, matches, and a Dox full of tnumbtacrs.
The tasK was to mount the candle on a wall so that it could burn without
dripping wax on the floor. The problem could be solved by thumbtacking the

box to tne wall, then mounting the candle in it.

This problem is sufficiently difficult that fewer than half the
subjects in one experiment were able to solve it in 20 minutes (Adamson,

1952). When the problem was presented to another group of subjects with
the thumbtacks lying on a table, and the box empty, 86 per cent solved it
in less than 20 minutes. The phenomenon underlying this finding has been
labeled "functional fixity." When an object is performing one function, or
has recently been used to perform some function, subjects are less likely

to recognize its potential use for another function.

Birch & Rabinowitz (1951) demonstrated a similar phenomenon, using

another problem studied originally by Maier (1931). Suojects were
introduced to a room where two strings were hanging from a ceiling, too far
apart to be reached simultaneously. The tasK was to tie them together.
This could be accomplished if a heavy object were tied to one string and
the string swung as a pendulum. The subject could reach this string as it
swung toward nim or ner wnile he or she was grasping the other string. Two
objects, an electric switch and a relay, were available for constructing
the pendulum. The subjects nad used either the switch or the relay (but
not both) in a previous tasK. )f ten subjects who had used the relay
previously, all used the switcn to construct the pendulum; of nine wno had
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used the switch, seven used the relay to construct the pendulum. )f s i.
subjects who had used neither object previously, three used the swit n and
three the relay to construct the pendulum.

Several findings support a hypothesis that functional fixity results
from a decrease in the likelihood of noticing certain critical features of
objects in the situation, such as the flatness or a Dox (in use as a
container), or the heaviness of a switch (after use in a circuit), or the
mobility of a string. The mechanisms that produce decreased noticing of
features in functional fixity may be quite different in different
situations, involving restrictive nypotheses about general classes of
solutions in some cases, and simple competition between feature-recognition
processes in others.

Some of the findings that support this explanation involve

demonstrations tnat solution of problems can be strongly influenced by
quite low-level perceptual factors. For example, in the pendulum tasK, the
idea of making the one string swing to maee it reachable by someone aolding
the other does not occur readily to most subjects, even in the presence of
one or more neavy objects. Maier (1931) showed that this idea occurred
immediately to many subjects wno had not previously thought of it when the
experiaenter casually orusned against the string and set it swinging.
GlucKsberg and .4eisberg (196o) presented pictures of the materials
available for use in solving DuncKer's candle problem, and found that
solutions were markedly increased wnen the label "Box" was included in the
picture. A process of noticing features of objects that can De related to
tne problem goal (3unc.er' s "suggestions from below") probably plays a
significant role in solution of construction problems, as .eisoerg and Suls
(1973) concluded in their theoretical analysis of solution processes for

the candle problem. Results consistent with tnat idea 4ere obtained by

Magone (1977), dno found that subjects produced a greater variety of
solutions in Aaier's two-string problem if they were initially prompted to
consider features of objects than if they were initially prompted to find a
solution of a specified kind, such as extension of one of the strings or

causing a string to swing back and forth.

The Einstellung effect discussed in section 11.3.2 is similar in

character to functional fixity; both effects result from the influence of
previous experience upon the availability of alternative solution steps for

problems. Furtnermore, the processes responsible for the two effects
probably are analogous in a subtle but significant way. Both involve a
condition in which a form of search is made less liKely than it would be
normally. in the case of Einstellung, previous use of one solution path

suppresses a search for problem-solving operators. In tne case of

functionaL fixity, a search for features of objects that could be useful in

the problem is suppressed.

-Another "insight" problem that has been studied is the nine-dot

problem. A three-by-three matrix of dots is given, and the task is to
connect all the dots with four straignt lines without any retracing. the

problem is difficult; most subjects do not thinK of drawing lines outside

the space defined by the matrix of dots, as is required for the solution.
The difficulty is apparently another instance of a restricted domain of
search, but the obvious hypothesis of a restriction based on the spatial

arrangement is not supported Dy data. eisberg and Alba (1981) instructed
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subjects that they should draw lines outside the square of dots, out tnat
nad little effect. However, wnen they gave an easier pcoolem requiring
drawing lines oeyond the region that contained dots, solution of tne
aine-dot problem was facilitated. A reasonaoe interpretat:on is cnat tne
easier problem led the suojects co consider proolem-solving operators tnat
were not in tne proolem space of suojects wno did not solve tne simpler
problem first. This findiag involves cne same principles as tne finding of
Katona "1940; Section UI!. 3.1) tnat a heuristic :or cnoosing operators
is more effective tnan a test applicaole to tme results of operators.

Ut.D. Yore Comolex Tasks of Composition and Design.

:n this section we discuss analyses of several complex tasks of
composition and design. ;e begin witn composition oz wri:ten essays and
music, tasks requiring metnods for handling multiple constraints. Then we
discuss two casks of answering examination questions and designing policies
in wnicft the problem solvers' recognition and rnowledge of constraints iLay
an important role in successful performance. T-hird, we discuss design of
procedures, in whicn the materials are actions tnat can oe performed and
the task is to use tnose actions to construct a procedure, suca as a
computer program, chat satisfies a criterion.

1LI.D.1. Problems of Composition. We discuss an analysis of
composing written essays, developed using thinking-aloud protocols oy
Flower and dayes (1980), and an instructional study of writing oy 3ereiter
and Scardamalia (1982). Then we briefly describe a study of composition in
music by Reitman (1)65), and data mnat snow tne need for extensive training
in a domain as a condition for creative accomplisnments (Hayes, 1981).

Flower and Hayes (198j) have stidied te task of writing an essay, a
task in which constraints play a major role. They noted tat successful
-riting requires simultaneous comoliance wi:n a large number of
constraints, operating at different levels. Dne requiremenct is selection
and organization of ideas from the 4riter's knowledge into a conerent
networ. of concepts and information for inclusion in the essay. Aioher
set of constraints involves tne linguistic and discourse conventions of
written language. A third set of constraints is rhetorical, involving the
need to arrange tne essay so it accomplisnes tne writer's purpose for tneintended audience.

Using protocols obtained from subjects wcr. .ng on writing cas.s, Hayes
and Flower (1980) found :nree general processes: planning, translating,
and reviewing. These three processes allow tne writer's attention to a
subset of the constraints at any time. La planning, informacion is
generated from the problem solver's zemory relevant to tne topic, and
decisions are made about ghat to include. in translating, text is produced
ising information cnat nas been retrieved, consistent with a writing plan
that nas oeen formed. :n reviewing, the generated text is evaluated and
revised in accord with rnetorical purposes and constraints of text
structure, as well as more detailed linguistic concerns sucn as correct
grammar. Hayes and Flower found tnat writing involves a mixture of tnese
processes, and postulated that the writing process includes a monitor znat
determines the sequence of suoprocesses, depending on tne nature of
difficulties tnat arise.
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To write successfully, an individual must understand the constraints

that apply at various levels to the text, must have effective methods for
generating or revising text to conform to those constraints, and must
actively engage in evaluation with respect to the constraints. In studies
of young writers, Bereiter and Scardamalia (1982) noted that inattention to
constraints, especially global rhetorical concerns, characterizes the
writing of many children. When they revise text that they have produced,
most children attend exclusively to low-level constraints, usually changing
only single words or small phrases, rather than attempting to improve more
significant general features of their essays. Bereiter and Scardamalia
hypothesized that the difficulty lies in the process of evaluating the
text, rather than in a lack of understanding of rhetorical goals or a lacK
of effective means for producing improved text. They gave students a set
of cue cards with evaluative comments, such as "I need another example
here," "The reader won't be convinced by this," "Even I seem to be confused
here," and "This is a good sentence." The children's task was to cnoose a
card that seemed appropriate for each sentence in their texts, and to ma~e
appropriate changes. The technique was effective, consistent with the idea
that children have difficulty managing the process of evaluating their
texts and applying global constraints, rather than lacking Knowledge of tne
constraints and methods for complying with them.

Multiple interacting constraints also characterize composition of
music, as was shown in an analysis by Reitman (1965) based on a protocol
obtained from a professional composer as he wrote a fugue. Reitman noted
that schematic structures that he called transformational formulas played
an important role; these included knowledge of the main components of the
musical form being composed (exposition, development, and conclusion) as
well as suocomponents of those units (exposition thematic material +

countermaterial; themiatic material ' motive + development, etc.). He
found that much problem-solving activity was concerned with constraints.
Some constraints were generated by properties of the instrument (piano)
chosen for the piece, requiring isical material suited to the instrument.
Other constraints were produced by material already included in the piece,
such as a requirement that countermaterial should be compatible with
thematic material, but sufficiently different to provide interest. The
composer characterized patterns that he developed as conventions, producing
melodic, rhythmic, and instrumental properties that were then "used to
carry on the movement of the music" (Reitman, 1965, p. 169), with
variations introduced to maintain interest.

A substantial knowledge base is required for solving problems of
composition, and an important question is how much experience and training
an individual needs to make substantial creative contributions to a field
such as musical composition. Using data from biographies and a standard
catalogue of recordings, Hayes (1961) determined the time between a
composer's beginning serious uusical training and the first composition
that had five independent cecordings in the catalogue. In almost every
case, at least ten years of virtually full-time training occurred before a
composer produced a worK of such high quality that it is common in the
recorded repertoire.
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III.D.2. Recognition and Knowledge of Constraints. In problems tnat

require satisfaction of constraints, a problem solver must recognize tne
constraints in order to perform successfully. In Section Ill.A.1 we

discussed Newell and Simon's (1972) finding that individual differences in
cryptarithmetic depended on inclusion in their problem spaces of
significant constraints, such as odd-even parity. Now we discuss two more
studies that have investigated this factor. In a study of performance on
examination questions, Bloom and Broder (1950) found that some students
performed poorly because they failed to recognize constraints stated in the
questions. In a study of problems involving administrative policy, Voss,
Greene, Post, & Penner (1983) found that novice problem solvers gave
inadequate formulations of problems because they lacked Knowledge of
significant factors in the problem situation.

In comprehensive college examination questions studied by Bloom and
Broder (1950), students often were required to make inferences or deal with
information presented in an unusual form. For students who performed

poorly, a significant factor was the students' inattention to constraints
in the statements of some questions. For example, a question might ask a
student to choose the best explanation of a situation, but the student

would ignore the relation of alternative answers to the situation and picK
the one that seemed most nearly true in itself. For these students, the
activity of problem solving occurred in a problem space that lacked some of

the information that was required for good performance. Bloom and Broder
developed an instructional method in which students compared their own
problem-solving process, recorded in a thinking-aloud protocol, with the
process of another student whose performance was more successful. This

training was effective for many students, teaching them to attend more
carefully to constraints in questions as well as other helpful

problem-solving strategies, such as increased attempts to infer plausible

answers from information they could retrieve from memory.

Voss et al. (19xx) obtained thinKing-aloud protocols on problems

involving design of an administrative policy. For example, problem solvers
were asked to develop a policy for improving agricultural productivity in a

region of the Soviet Union. Subjects with different amounts of Kcnowledge
about Soviet government and history worked on the problem, including
students in an introductory course in Soviet politics, experts in political
science, some who specialized in the Soviet Union and others with other
specialties, and experts in another field altogether, chemistry. The
solution process of experts was primarily one of formulating the problem,

with a long initial period of considering historical and political factors
and successive reformulations based on evaluations of proposed solutions
against Known constraints. The inexpert student subjects, with much less
knowledge than the experts, gave problem formulations that lacked inclusion
of important constraints. Experts in chemistry worked more systematically

than the political science students, sometimes using general knowledge
about administrative systems to provide useful conjectures, but also lac ed

the rich formulations that characterized the problem solvers with

specialized knowledge.

III.D.3. Design of Procedures. To complete this section, we discuss

tasks in which the materials are a set of actions that can be performed,

and the problem solver constructs a procedure with these components.* In a
simple example, a list of errands was shown to subjects, along with map,
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and the subjects constructed a schedule for performing as many of the
errands as possible during a day (Hayes-Rotn & Hayes-Roth, 1978). lore
complex examples are computer programming and software design, and design
of experimental procedures in microbiology. We have mentioned the
similarity of these problems to problems of tiansformation, discussed in
Section II, especially wnen planning is used for constructing a sequence of
actions to reach the problem goal. The knowledge structures of experienced
problem solvers that have been analyzed in domains of software design and
design of experimental procedures are very similar to the domain-specific
knowledge used in planning, for example in the domain of geometry discussed
in Section 11.3.1.

Hayes-Roth and Hayes-Roth (1978) gave subjects a map of a fictitious
town, showing the locations of several stores and other businesses.
Subjects also were given a list of errands, such as buying fresh vegetables
at the grocery, picking up medicine for a dog at the vet, and seeing a
movie. Subjects were to plan a schedule that included as many of the
errands as possible. The task presents some general constraints, mainly a
limited total amount of time available. It also presents local constraints
and interactions. For example, it is better to buy groceries later in the
day, so they will still be fresh when the shopper returns home; and it is
best to go to the movie at one of the times that the feature is starting.
Interactions include proximity of shops, making it more efficient to place
errands together in the sequence that involve shops that are near one
another.

Hayes-&oth and Hayes-Roth simulated performance on their planning tasK
with a model that contains several planning specialists and a blackboard
control structure, a design similar to one used earlier in a speech
understanding system called Hearsay (Reddy, Erman, Fennell, & Neely, 1973).
The specialists are designed to make suggestions about different kinds of
planning decisions. They all have access to inferences, suggestions, and
other information, which is located in the system's blackboard. This
system design supports a feature called opportunistic planning, which was
found in the performance of human problem solvers. Opportunities arise in
the form of conditions that make it easy to include an errand, such as the
proximity of a store to a place that is already included in the plan, and
an appropriate specialist can be activated by that condition.

In writing a computer program, one designs a procedure that performs a
designated function. Studies of computer programmers and designers have
revealed important characteristics of the knowledge required for solution
of these design problems.

Soloway, Ehrlich, Bonar and Greenspan (1982) gave three problems,
typical of elementary programming courses, to students in the first and
second introductory courses in programming. They identified schematic
cognitive structures that they called plans, needed for successful problem
solving. The required schemata are quite 0asic, involving construction of
iterative loops and use of variables. The schemata provide knowledge of
requirements for performing significant program functions, such as
interactions between processing and testing a variable within a loop and
between the loop processing and initialization. Students wno lacked
adequate versions of these schemata made significant errors, for example,
failing to recognize distinctions between different looping structures.
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Experiments on memory for program texts have shown that experienced
programmers can recall more successfully than beginners (Adelson, 1981;
McKeithen, Reitman, Rneter, & Rirtle, 1981) a phenomenon like tnat found
for memory of chess board positions (Section 11.3.2) and other domains.
The acquisition of plan schemata as hypothesized by Soloway et al.
provides a natural explanation of this finding.

More advanced problems, involving software design, were studied oy
Poison, Atwood, Jeffries, & Turner (1981). A task in software design
involves planning a complex program; actual writing of the program is
performed separately. A problem studied by Poison et al. was design of a
program for compiling an index for a text, given a set of key words to be
included in the index. Problem solutions with thinKing-aloud protocols
were given by professional software designers and by students. The experts

recognized functions that nad to be included in the solution, such as
defining a data structure for the text and searching the key word set for a
word tnat matches each word encountered in the text. Poison et al.
concluded that experts' knowledge includes general design schemata that

enable decomposition of problems, progressively forming more well-defined
subproblems, with knowledge of specific techniques for some subproblems

that are encountered. These schemata provide another example of Knowledge
for action organized hierarcnically liKe that developed by Sacerdoti (1977;
Section II.B).

Problems of experimental design have been studied in the domain of
microbiology; two versions of a program called 14olgen have been developed.

One, by StefiK (1981), designs procedures for modifying the genetic
structure of microorganisms. An important issue considered by Stefik was
the handling of constraints that arise from interactions between

componennts of a procedure. olgen designs procedures in a top-down

manner, with abstract plan schemata gradually made more specific. A method
of constraint posting was developed in which requirements for one of the
design components can be taken into account in the decisions made about

other components.

The second version of Molgen, by Friedland (1979), designs analytic
experiments such as determining the sequence of base molecules in a DNA
string or finding a set of restriction sites on a molecule. This model
uses schemata called skeletal plans that incorporate information about

experimental procedures that are used to develop specific experimental
plans through a process of filling in details, based on the specific

problem requirements.
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IV. Induction

In this section we discuss inductive problem solving. In a problem of
induction, some material is presented and the problem solver tries to find
a general principle or structure that is consistent with the material.
Important examples include scientific induction, including situations in
which the material is a set of numerical data and the task is to induce a
formula or a molecular structure, language acquisition, where the material
is a set of sentences and the task is to induce the rules of grammar for
the language, and diagnosis, where the material is a set of symptoms and
the task is to induce the cause of the symptoms. Analogy problems and
problems of extrapolating sequences are inductive tasks that are widely
used in intelligence tests. The task of inducing a rule for classifying
stimuli into categories has been used in a large and significant body of
experimental study.

An induction problem presents a dual problem space that includes a
space of stimuli or data and a space of possible structures, such as rules,
principles, or patterns of relations (cf. Simon & Lea, 1974). The task
can be conceptualized as a search in the space of structures. The problem
is solved by finding a structure that satisfies a criterion of agreement
with the stimuli or data. An experimental subject can be tested by
requiring use of the structure for stimuli that have not yet been shown.
When the task is to induce a rule for classifying stimuli, new stimuli may
be presented to test whether the subject can classify them correctly. When
the task is to induce a pattern in a sequence, the subject may be required
to extend the sequence by producing additional elements that fit the same
pattern as those that are given.

Solving an induction problem can proceed in two ways, and in most
tasks a combination of the methods is used. The first is a top-down
method. It involves generating hypotheses about the structure and
evaluating them with information about the stimulus instances. Second,
there is a bottom-up method that involves storing information about the
individual stimuli and making judgments about new stimuli on the basis of
similarity or analogy to the stored information. To perform the top-down
method, the problem solver requires a procedure for generating or selecting
hypotheses, a procedure for evaluating hypotheses, and then a way of using
the hypothesis generator to modify or replace hypotheses that are found to
be incorrect. To use the bottom-up method, the problem solver needs a
method of extrapolating from stored information, either by judging
similarity of new stimuli to stimuli stored in memory or by forming
analogical correspondences with stored information.

Induction involves a form of understanding, where a representation is
found that provides an integrated structure for diverse stimuli. This
general feature also characterizes processes of representing problems
(e.g., textbook physics problems) discussed in Section II.D. There, the
space of stimuli is the information in the problem situation -- often, a
problem text or instructions -- and the space of structures is a set of
possible representations that can be constructed. To be successful, a
problem representation must provide the information needed to achieve the
problem goal. Thus, in representing transformation problems, the inductive
search is constrained by the requirements of problem-solving operators that
are available. Often in problems of induction, such constraints are not
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present: one does not have to do anything with the pattern that is found
in the information. However, in some inductive problems, such as medical
diagnosis, there are strong constraints related to available operators.
The goal is to restore the ailing person to proper functioning, and the
effort to induce a cause serves the goal of determining an effective
remedy.

In some task domains, the possible structures are represented
explicitly as formulas. Examples include induction of quantitative
formulas from numerical data in physics, or induction of the molecula
structure of a chemical compound. Patterns induced in letter-sequence
problems also consist of explicit formula-like rules. These tasks share
important properties with problems of design and arrangement, discussed in
Section III. The goals of these induction tasks can be considered as
design of a formula that agrees with the data. Solution of design problems
generally requires use of strong constraints to limit the space of
possibilities for search, and this important property is also found in
risks that involve induction of formulas.

Our discussion of inductive problem solving will be in four
subsections. In Section IV.A, we discuss induction of categorical
concepts, including induction of rules for classifying stimuli and
categorical concepts in the form of prototypes. In Section IV.B we discuss
induction of more complex concepts involving sequential stimuli: patterns
in sequences of letters and the grammatical rules of a language. Section
IV.C discusses induction of relational structure including analogy test
items and induction of regularities and structures in science and
mathematics. Finally, Section IV.D discusses diagnostic problem solving,
including medical diagnosis and electronic trouble-shooting.

IV.A. Categorical Concepts

Of the various inductive tasks that have been studied, by far the
greatest attention has been given to induction of categorical concepts.
This is partly in recognition of their practical importance. Our human
capability of organizing experience using conceptual categories undoubtedly
contributes much to making our cognitive lives manageable.

In an experiment on concept induction, the experimenter constructs a
set of stimuli (e.g., diagrams with figures that vary in shape, size,
color, and other attributes), and decides on a rule for classifying the
stimuli (e.g., "the red circles are positive, all other stimuli are
negative"). The subject is given information about several individual
stimuli -- that is, is told whether each stimulus is positive or negative.
The subject's task is to induce the rule of classification. Usually, the
experimenter tests whether the subject has induced the concept by
presenting new stimuli to determine whether the subject can classify them
correctly.

In an early discussion, Woodworth (1938) distinguished between
processes of concept induction involving bottom-up and top-down methods.
In a bottom-up process, knowledge of the concept is analogous to a
composite photograph, consisting of an impression summed over the various
stimuli in the category with the common features emphasized and the
variable characteristics "washed out." In a top-down process, the
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problem-solver actively constructs hypotheses about features that define
the concept and tests these hypotheses with additional information about
examples.

We discuss research on concept induction in three subsections. The
first two discuss studies of top-down processes of inducing concepts that
are defined by two or more stimulus features and then of concepts defined
by a single feature. The third subsection discusses studies of bottom-up
processes if inducing concepts.

Figure 11 here

IV.A.1. Multifeature Concepts. When two or more stimulus features
are combined to form a categorical concept, they are combined in some
logical formula, such as "A and B," or "If A then B." A stimulus is a
positive example of the concept if the formula is true as a description of
the stimulus. Consider the set of stimuli shown in Figure 11. The concept
"Green and Circle" specifies the stimuli in the second column from the
left. The concept "Green or Circle" specifies the stimuli that are in

columns 1, 2, 3, 5, and 8.

Consider the requirements for performance of this task, assuming that

it is done in a top-down, hypothesis-testing manner. First, the stimulus
features must be discriminated; the problem solver must have processes for
recognition of the features that are used to define concepts. Second,
there must be a process for hypothesis formation, which constructs
candidate hypotheses to be considered. Third, a process of hypothesis
evaluation is needed to test the hypotheses that have been formed.
Finally, a process for hypothesis modification is required to use the

results of the tests to eliminate incorrect hypothesis, to change existing
hypotheses or form new ones.

A landmark study of multifeature concept induction was conducted by
Bruner, Goodnow, and Austin (1956). Bruner et al. observed subjects
working on concept induction problems, including verbal reports about their
hypotheses. The results we discuss here were from experiments in which
subjects were instructed that concepts were conjunctions of features, but
had to induce how many features were relevant and what the features were.
We consider two experiments in which the problem was to induce a concept
defined as the conjunction of two features.

In one experiment, subjects were required to solve two problems with
the array of Figure ii shown, and a third problem of the same kind "from
memory," that is, with the stimuli not available. In each case, the
problem began with the experimenter providing a positive instance, a
stimulus that was a member of the concept category. Then the subject could
choose any stimulus in the display and ask whether it was a positive or
negative instance of theconcept. The subject could offer a hypothesis
after the choice of a card, but this was not required. The subject
continued choosing cards and receiving information until the correct
concept was induced.
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Figure 11,. An array o-1 instances comprising combinations of four attri' utes, each exhibit-
incn three values. Open figures are in green, striped figures in red, solid figures in
black (from Bruner, Goodnow, & Austin, 1955).
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Bruner et al.'s results included characterizations of a variety of
strategies used by subjects in selecting stimuli. Strategies of one kind,
called focussing strategies, involve finding a positive instance of the
concept, then determining which of its features are relevant. For example,
suppose the concept was "Red and Circle." The subject might be told that
the stimulus with three red circles and two borders is a positive instance.
The subject then could choose a stimulus differing from that focus stimulus
in the number of circles, say, tw red circles with two borders. This
would be a positive instance, and the subject would infer that the number
of figures is not a relevant attribute. Then the subject might vary the
color of the figures, choosing the stimulus with three green circles and
two borders. This would be a negative instance, and the subject would
infer that the color of the figures is relevant, that is, that "Red" is
part of the definition of the concept. With further choices and
information, the concept's definition would be inferred.

Other strategies, called scanning strategies, involve consideration of
specific hypotheses and use of information to narrow down the set of
possible hypotheses. For example, a subject might consider as distinct
possibilities the hypotheses "Three figures," "Red," Three and Red,",
"Circle," "Three Circles," and "Red Circles." Then finding that a stimulus
with two red circles and two borders is a positive instance, all the
hypotheses with the property "Three" could be eliminated. Use of a
scanning strategy places severe demands on memory. It is impossible to
consider all of the possible hypotheses simultaneously (there are 255 of
them), but it is desireable to consider as many as one can, since
information can only be used to evaluate hypotheses in the sample being
considered.

The focussing strategies and the scanning strategies differ primarily
in the processes they use in formation of hypotheses. In the focussing
strategies, information about instances is used to constrain hypothesis
formation. Tests are performed to see whether an attribute is relevant,
and when the attribute is eliminated, no hypothesis using it will be
forned. If the focussing strategy is used successfully, all but the
correct attributes can be eliminated, and the correct hypothesis can beformed directly. In the scanning strategies, less use of problem

information is used in forming hypotheses, and hypotheses that are in the
sample are tested directly with information about instances. The use of

information in evaluating hypotheses is somewhat more direct in the
scanning strategies, but there is a consequently greater requirement for
record-keeping in memory regarding a large set of hypotheses.

There were 12 subjects in Bruner et al.'s experiment, and their
performance was used to classify them as focussers and scanners. A subject
was classified as a focusser if the majority of his or her choices differed
in just one attribute from features of the focus stimulus that had been
found relevant or were as yet untested, or involved specific variations of
this selection process, including redundant tests or attempts to test more
than one attribute with a stimulus. Seven subjects were classified as
focussers and the rest were treated as scanners. The focussing strategy
was advantageous for the subjects who used it. They required about
one-half as many choices as the scanners to solve a problem with the
stimulus array present (medians of five and ten choices, respectively, for
focussers and scanners). Further, the scanners had noticeably greater
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difficulty solving a problem "in their heads" than they did when the
stimuli were present (median of 13 choices), except for one scanner who
discovered the focussing strategy in working on the third problem. The
focussers' performance without stimuli present did not differ from their
second problem with the stimuli.

Bruner et al. conducted two experiments to investigate situational
factors that influenced subjects' choices of strategies. One experiment
compared the effect of an orderly arrangement of stimuli with the same
stimuli presented haphazardly. The stimuli used abstract forms, differing
on six dimensions with two values on each dimension. With the 64 stimuli
arranged systematically, similar to the arrangement in Figure 11, almost
all subjects used focussing strategies. When stimuli were not arranged
systematically, subjects typically used scanning strategies. Another
condition in which there was a tendency to use scanning stritegies was when
concrete stimuli were used, such as drawings of persons varying in sex,
size, and clothing.

An analysis by Hunt (1962; Hunt, Matin & Stone, 1966) provided a
hypothesis about how to represent categorical concepts in cognitive
structure. Hunt proposed that knowledge of a categorical concept is a
cognitive procedure for deciding whether a stimulus is or is not a member
of the category. The form of the procedure that Hunt investigated is a
decision network, a structure of perceptual tests organized in a way that
reflects the logical structure of the concept. (This same form was used by
Feigenbaum (1963) for the Elementary Perceiver and Memorizer, used in
simulations of rote verbal memorizing. Examples of such decision networks,
for recognizing some concepts in geometry problems, are in Figures 5 and
6.) Experiments conducted by Trabasso, Rollins & Schaughnessy (1971)
provided evidence that supports Hunt's characterization. Trabasso et al.
measured latencies for categorical decisions about stimuli and obtained
results that agreed with Hunt's model; longer times were required for
decisions in which the model specifies a larger number of perceptual tests.
A model that simulates acquisition of conjunctive concepts was developed by
Williams (1971) using Hunt's representational hypothesis along with
assumptions about limited short-term memory capacity and changes in the
salience of dimensions.

An important aspect of the acquisition of complex concepts is
induction of the logical relation between the stimulus features in the
definition. This has been studied by Bourne and his issociates in
experiments in which subjects are informed of the features that the rules
include. For example, a subject might be told that the rule includes "Red"
and "Circle," but then would have to discover from examples whether the
combination is conjunction, disjunction, conditional, or biconditional.
When subjects are not experienced in this rule learning task, there are
substantial differences in the difficulty of inducing the different kinds
of rules, and these correspond to differences among the types of rules
found in standard concept induction tasks (Haygood & Bourne, 1965). The
rule that is learned most easily is the conjunctive rule.

One possible explanation for differences in difficulty is that the
rules differ in familiarity to the subjects, with conjunction being the
most familiar way to combine features. This would lead to a bias in the
process of forming hypotheses, with the less familiar forms of hypothesis
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generated later, if at all, and consequent delays in problem solutions.
Evidence supporting such an interpretation was obtained by Bourne (1970),
who found that differences among the rule forms decreased when subjec s
were given a series of rule induction problems. A more specific
hypothesis, proposed by Bourne (1974), is that with experience, subjects
acquire a strategy for representing information about stimuli in terms of
truth-table values regarding the features known to be relevant. For
example, if "Red" and "Circle" are the features, then a red circle has the
value T-T (true )n both atributes), a green circle has the value F-T, and
so on. This is an efficient representation for solving concept-induction
problems, because each of the alternative rule forms corresponds to a
distinctive subset of truth-table values. A conjunctive rule is satisfied
only by T-T; a disjunctive rule is satisfied by T-F, F-T, and T-T; a
conitilonal rule is satisfied by T-T, F-T, and F-F; and a biconditional
rule is satisfied by T-T and F-F. The truth-table hypothesis is supported
by a finding by Dodd, Kinsman, Klipp and Bourne (1971) that training on a
task of sorting stimuli into the four categories of the truth table
facilitated subsequent performance on rule induction problems.

IV.A.2. Single-Feature Concepts. We now consider induction of
conceptual rules consisting of single features, such as "all the red
pictures," or "the circles." The task of inducing such a concept is
simpler, of course, than inducing a multifeature concept.

Evidence for Top-Down Induction. Single-feature concept induction has
been studied extensively by H. H. Kendler T. S. Kendler, and their
associates. One question addressed in their experiments is whether
concepts are acquired in the form of a verbalized rule or in the form of an
aggregation of individual stimulus-response connections. It is likely that
i verbalized rule would result from a top-down hypothesis-testing process
of induction, and an aggregation of stimulus-response connections would
probably result from a bottom-up process.

Evidence has been obtained in experiments in which the conceptual
category is changed without informing the subject. A subject is given an
initial concept-induction problem involving a single stimulus feature
(e.g., "respond positively to red stimuli"). After the subject meets A
criterion of correct responding the rule is changed, either changing the

positive value of the same attribute (e.g., from red to green), called a
reversal shift, or changing to a different attribute (e.g., irom red color
to large size), a nonreversal shift. It was found that adult human
subjects, and kindergarten children who solved the initial problem quickly,
adjusted more easily to the reversal than to the nonreversal shift (Buss,
1953; Kendler & D'Amato, 1955; Kendler & Kendler, 1959), while rats and
slower-learning kindergarten children adjusted more quickly to the
nonreversal shift (Kelleher, 1956). An interpretation is that adults and
school-aged children use a hypothesis -;!-h as "it depends on color," which
does not have to be changed to adjust the reversal shift, while nonhuman
subjects and preschool children learn specific stimulus-response
associations, for which the reversal shift requires a greater change. In a
later study, Erickson (1971) found that college-student subjects adjusted
more rapidly to nonreversal shifts if they had been carefully instructed
about the nature of the concept induction task, suggesting that when
subjects have more complete information about the task, they tend to remove
stimulus attributes from consideration when their hypotheses are
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disconfi-med.

Further evidence that adult human performance in concept induction is
based on definite hypotheses was obtained by Levine (1963) who showed that
on a series of test trials with no feedback given, nearly all of the

sequences of reonses given by college-student subjects were -onsistent
with a systematic hypothesis about the conceptual rule.

Processes of Sampling Hypotheses. The ?rocesses of forming and

evaluating hypotheses in single-feature concept induction are quite
straightforward. Any stimulus feature that is noticed can be the basis of

a rule, a-d a rule that links a feature with a response is confirmed or
negated directly by information about the category of any example. Because
the hypotheses are simple, and there are many possible hypotheses, it is
efficient for subjects to consider samples of hypotheses rather than a
single hypothesis at a time. A sample of a few hypotheses is considered,
and on each trial the subject can eliminate hypotheses that are

inconsistent with the information given about that trial's stimulus. If

the sample includes the correct hypothesis, the process of elimination can

narrow the sample down to that hypothesis, which solves the problem. If
the sample does not include the correct lhypothesis, eventlally all the
hypotheses in the sample will be eliminated and the subject will have to
generate another sample. Note that this method is similar to the
strategies that Bruner et al. (1936) called scanning. Like the scanning
strategies, the strategy of testing samples of hypotheses is demanding on

memory.

Theoretical discussions have included many proposals about processes
of choosing hypotheses to consider, eliminating hypotheses based on

stimulus information, and remembering previously eliminated hypotheses.
Several of the proposals have been discussed by Gregg and Simon (1967) and

by Millward and Wdickens (1974).

Results obtained by Wickens and Millward (1971) provide support for an

assumption that experienced subjects remember stimulus attributes that they

have eliminated. According to Wickens and Millward's rood1, if the sample
of hypotheses is exhausted, the attributes of eliminated hypotheses are
stored in memory. Memory limitations apply both to the size of the ample
that can be considered and to the number of previously eliminated

attributes that can be remembered. In Wickens and Millward's experiment,
subjects received extensive training in concept induction, solving many
problems with the same set of stimuli, with different attributes used to
define the concept in the successive problems. Performance improved

sharply after the first problem or two, and stabilized within 10-20
problems. The model of ittribute-elimination was supported by statistical

data as well as by subjects' responses to a retrospective questionnaire.
Differences in performance among the individual subjects can be explained

by assuming that they all performed in iccord with the model's assumptions,
hut that they differed in the sizes of the hypothesis samples that they
considered and in their capacities for remembering previously eliminatp

hypotheses.
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When Derformance of inexperienced subjects has been analyzed 'isiag
stochastic models, the results have revealed a surprisingly simple
structure of the problem-solving process. R~stle (1962) investigated
mathematical properties of a process in which a sample of hypotheses is
considered by the subject, and on each trial a response is chosen ising one
of the hypotheses. In Restle's model it is assumed that subjects'
processing of information differs depending on whether the response on a
trial happens to be correct. After each -orrect response, hypotheses that
are inconsistent with the information about that trial's stimulus are
eliminated from the sample. After an error, the subject considers a new
sample of hypotheses. A simple stochastic process results if it is assumed
that sampling occurs with replacement. If this assumption is made,
solution of the problem is an all-or-none event; the probability of
solving the problem with no more errors after taking a sample is a
constant, independent of the number of trials or errors that have occurred
previously. This implication is counterintuitive. I" we assume that 'he
subject is sampling and testing hypotheses, it says that there is no
accumulation of information Dver trials that makes sampling of the correct
hypothesis more likely. The all-or-none property also is incompatible with
almost any assumption of learning stimulus-response associatilns t
strengthened gradually over trials, as well as the summative or
photograph" process that Woodworth (1938) discussed.

The counterintuitive all-or-none property of Restle's -ode! re:'f
strong empirical support in experiments by Bower and Trabasso (1964).
Their experiments with college-student subjects included .onditiDns in
which the categorical rule was changed before the subject sol.,ed the
problem, either using a reversal shift or a nonreversal shift. The
assumption of resampling with replacement after errors predicts that shifts
prior to solution should not delay the solution of the problem, and This
surprising result was obtained.

Computer simulation models of the concept induction tisk, using
different hypothesis generating strategies, have been proposed by Gregg and
Simon (1967). They showed that these process models can be iggregated
(approximately) into simple stocnastLc models like Restle's (1962),
providing an information-processing explanation for the simple statistical
regularities implied by the stochastic models and found in Bower and
Trabasso's (1964) data. Gregg and Simon found that a range of different
models is required to account for the set of experiments reported by Bower
and Trabasso. According to these models, the nature of sampling depends
primarily upon how much information the subjects can retain about the
classification of previious instances, and about which hypotheses had
already been refuted by the evidence. In general, the process models that
fit the data best were those that implied very severe restrictions on
short-term memory for previous instances and their classification. Given
this restriction on memory, the models are consistent with the all-or-none
property -- that is, the expected number of trials to solve the problem is
independent of the time the subject has already spent on it.

IV.A.3. Bottom-Up Induction of Concepts. In addition to inducing
categorical concepts in a top-down, hypothesis-based manner, induction also
can be a bottom-up process, involving gradual emergence of the concept from
the features of individual stimuli. This idea has received less attention
in psychological research, but it has not been totalLy missing from the
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discussion.

Hull (1920) conducted a study of learning in which the materials were
pseudo-Chinese ideograms paired with nonsense syllables. The stimuli
paired with the same response syllable from list to list all shared a
stimulus component, a radical that was part of each of the atimuli. Hull's
subjects showed positive transfer on the later lists in the experiment,
indicating that they had inducei the concepts to some extent. However,
they typically were not aware of the feature or features that were shared,
indicating that they were not actively testing hypotheses about the
categorical rules. It seems likely that the stibjects stored information
about the individual stimulus-response pairs, and gradually built up
impressions that included the shared components,

-%result similar to Hull's was obtained by Reber (1967), who studied
induction of rules for an artificial language. Reber constructed sequences
,)f letters using a set of grammatical rules: for example, "Start with a T
or a V," "After an initial T, use a P or another T," and "After a V that is
not at the beginning, use a P or end the ;eqlence." The sequences, from six
to eight letters long, were used in a learning task in which subjects were
ihown the sequences and had to recall them. Subjects working on tae
grammatical sequences learned faster than sub-ects who worked on a
comparable set of random letter sequences. After learning a set of
grammatical sequences, sajbjects were able to discriminate between new
grammatical sequences and sequences that violated the grammer with more
than 75" accuracy. Even so, sibjsects were not aware of the rules that were
uised to form the grammaticil seqiiences, and showed little awareness of
their shared features.

In recent research and discussion, Roqch (e.g., 1978) has argued
persuasi!ely that much )f our -onceptuial knowledge is not organized on the
bas;s of definite feature structures, like those used in most experimnents
on induction if categorical ruiles. First, Rosch, Mervis, Gray, ohnson,

ind 3oyes-Brain (1976) argued, with empirical support, that concepts at
different Levels of generalfty are not eqiial in halience, hut that there
are basic categories whose members 3hare large numbers of features that are
not shared by membe,, of other categories, including characteristic
patterns by which we interact with them motoricilly. For example, "chair,"

"table," and "hamer" refer to basic categories, while their
superordinates, "furniture" and "tool," and their subordinates, such a1
"picnic table" and "claw hammer," are less fundamental. D;ata uopporti
this distinction were obtained h' Rosch et al., who gave saibjec. a
If 90 terms and asked tnem to write all the attributes that -m e ,
Another zroup f subjects was given the same tens and asket
descriptions of muscle movements that they would lake i;n ii t r
the ob ects. Many more attributes and movement, wereo i4-, '
basic-Level terms than their superordinat,'s, and very "
at-itutes beyond those for the oas'c terms vero_ i':en
terms.

Rosch (1973, L975) also has argue! that -

represented as prototypes, rather thn ; i
may be thought of as i kind -)f schema -r
category, which q at ,ated n-or- c!i -
by atypi' U ones. For exampl-, ,
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canaries are judged more typical than penguins or peacocks, and in the
category of tools, hammers and saws are judged more typical than anvils or
scissors. Rosch (1975) found that there is very strong agreement among
subjects in ratings of typicality. Evidence that typicality influences
cognitive processes has been obtained when subjects are asked to judge
whether statements such as "A robin is a bird" or "An anvil is a tool" are
true. In these experiments, judgments are made more quickly for the
statements involving more typical examples (Rosch, 1973; Rips, Shoben &
Smith, 1973).

Acquisition of prototypical concepts has been studied experimentally
by Posner, Goldsmith and Welton (1967), Franks and Bransford (1971), and
Reed (1972), among others. For these experiments, a set of stimuli is
conscructed by varying a single stimulus, the prototype. The stimuli may
be geometric forms, patterns of dots, schematic faces, or other kinds of
stimuli. The stimuli are shown to subjects, and then a recognition test is
given. Subjects' confidence in recognition is a function of the similarity
of stimuli to the prototype. When the prototype itself is shown, subjects
respond positively with strong confidence, even if the prototype was not
included in the set of stimuli they saw. Several investigators have shown
that this performance can be explained by considering the frequencies with
which various stimulus features occur during the learning trials; for
example, the features of the prototype appear with high frequency, even if
the prototype itself is not presented (Reitman & Bower, 1973; Neumann,
1974).

A model that simulates bottom-up acquisition of a prototypical concept
has been formulated by Anderson, Kline & Beasley (1979), using general
principles of learning in the context of a production-system model of
performance. Anderson et al.'s system stores cognitive representations of
the patterns seen in individual stimuli, and additional representations are
stored by processes of generalization and discrimination. Representations
are strengthened when they provide a basis for recognizing stimuli that are
presented. Anderson et al.'s simulation accurately mimics subjects'
performance on recognition tests, including false recognition of prototypes
that have not been presented during learning.

A reasonable expectation is that many learning processes are not
strictly top-down or bottom-up, but a combination of the two. Such a
combination was analyzed by Greeno and Scandura (1966) and by Polson (1972)
in studies of concept induction involving verbal items. In the
experimental setup, like that used by Hull (1920), lists of paired
associates are presented to be memorized, and i- successive lists the same
response term is paired with different stimuli that are related to one
another. Greeno and Scandura found that transfer to individual items
occurred in an all-or-none manner; different sets of items had differing
proportions of items with no errors, but for items with any errors
performance in the transfer conditions could not be distinguished from each
other or from performance on control items. The finding of all-or-none
transfer suggests a top-down conceptual process in which any individual
item either is or is not recognized as a member of a definite category.
Poison (1972) studied acquisition of the conceptual categories and found
that this was not an all-or-none process. The findings were consistent
with a hypothesis of a two-stage process. For some subjects, there is an
initial stage of bottom-up learning, in which associations of responses
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with patterns of features are stored, with transfer depending on features
that are shared by similar items. In the initial phase, the subject may
notice the shared features of members of a concept category by chance.
Once the shared feature of a category is recognized, the second stage of
learning occurs involving an active, top-down process in which the subject
actively searches for features to use in classifying the stimuli.

It is likely that both the top-down and the bottom-up methods of
learning about categories are available to human learners, and the question
arises as to what circumstances make it more likely for one rather than the
other to be used. Brooks (1978) compared a condition in which subjects
were asked to learn names for individual stimuli with a condition in which
subjects induced a rule for classifying stimuli. Explicit rule induction
led to better knowledge of relevant features, reflected in better
performance on classification of new stimuli, as would be expected from
learning by top-down induction. Subjects who learned individual names gave
superior performance in recognition of specific stimuli from the learning
set, but also recognized new stimuli at an above-chance level, as would be
expected from bottom-up acquisition of a concept involving a summation of
instances.

IV.B. Sequential Concepts.

We now discuss two tasks involving induction of concepts that are more
complex than those discussed in Section IV.A. In the tasks we discuss now
materials are sequences of elements that are organized in patterns. The
subject's task is to induce the patterns. First, we discuss the task of
extrapolating sequences of letters, where a subject must identify patterns
in the sequences that are presented and use the patterns to extend the
sequences. The second task is induction of grammatical rules of a language
from example sentences that are consistent with the grammar.

In these tasks, the problem space includes a set of stimuli and a
space of possible structures, as in all induction problems. However, in
comparison to the space of possible rules for classifying stimuli, the
space of possible pattern descriptions for sequences and the space of
possible grammatical rules are extremely large. To solve these problems,
substantial reductions of the search spaces are required, Ind these are
accomplished by constraints on the generation of hypotheses. In sequence
extrapolation, a limited set of relations and sequence forms are
con'idered. In the analysis of grammar induction that we discuss,
hypotheses about the structures of sentences are constrained by the
structures of situations that the sentences describe.

IV.B.I. Sequence Extrapolation. An example of a sequence
extrapolation problem is the following: mabmbcmcdm , where the task is
to extend the sequence. In a model of sequence extrapolation formulated by
Simon and Kotovsky (1963), a pattern is induced from basic relations
between the letters in the problem string. The pattern is a kind of
formula for producing the sequence; once discovered, the formula can be
used to extend the sequence, as required.
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For example, for the problem mabmbcmcdm , the formula that is
induced is the following: [sl:m; s2:a], [sl, s2, (N(s2)), s2]. The first
part of the formula is initialization. There are two subsequences, denoted
sl and s2. SI starts with m, and s2 starts with a. The second part of the
formula gives instructions for producing the sequence. The instructions
are interpreted as follows: sl: write the current symbol of sl; s2:
write the current symbol of s2; (N(s2)): change the symbol in s2 to the
successor (N for next) of the current symbol; finally, s2: write the
(new) current symbol of s2. The entire sequence is generated by repeating
this routine as many times as necessary.

The problem solver constructs a formula as a hypothesis, based on the
first letters of the given sequence, and tests the hypothesis with more of
the letters. There are many different ways to form a sequence of letters,
so in principle, the number of possible formulas is extremely large. To
make the task manageable, some constraints have to be imposed. In Simon
and Kotovsky's (1963) model, constraints are imposed on the generation of
hypotheses. As in the focussing strategies that Bruner et al. (1956)
identified for concept induction, hypotheses about the structure of a
pattern are based on features of the stimulus, rather than being generated
a priori. Furthermore, only a limited set of the possible hypotheses are
ever generated, because the model only considers a small set of relations
between elements and it is assumed that the sequence fits a specific form.

The model knows the alphabet of letters, both forward and backward.
The relations that are recognized are identity and successor, I and N. The
problem solver assumes that the sequence is periodic, an important
structural characteristic.

The model begins by determining the period of the sequence.
Periodicity can be discovered either by noting that a relation is repeated
every nth symbol, or noting that a relation is interrupted at every nth
position. In the problem mabmbcmcdm the periodicity is identified by
noting that the relation I occurs between every third symbol, the m's.
Then the problem solver produces a description of the symbols that occur
within the periods and relations between correspondinging symbols in
successive periods. For mabmbcmcdm the description requires two
subsequences, one of which is just repetition of m; the other starts with
a and is incremented to produce the final term within the set of three

symbols. The result of the process is a formula for producing the
sequence, such as the one described earlier for the example problem.

Because the product of the inductive process is an explicit formula,
sequence extrapolation can be considered as a problem of design as well as
a problem of induction. Viewed in this way, the problem solver has
available a set of symbols -- sl, s2, s3, (perhaps more), N, and the
letters of the alphabet -- and has the task of constructing from these
symbols. The feature of sequence extrapolation that makes it an inductive
task is the criterion that the construction must satisfy. The criterion is
that the formula should produce the sequence of letters that is given in
the problem. In ordinary problems of design, such as anagram or
cryptarithmetic, the criterion is a general property rather than agreement
with an arrangement of stimuli.

.. . .. -__ _ _ _ -
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Simon and Kotovsky (1963) reported data on difficulty of solving 15
different sequence-extrapolation problems by two groups of human subjects
and found fair agreement between the relative difficulty of problems for
human solvers and for their program. A more thorough empirical study was
conducted by Kotovsky and Simon (1973), who collected thinking-aloud
protocols on problems with sequences under presented under panels that
subjects lifted to see individual letters. The data were consistent with
the model in important respects. Subjects, like the model, determined the
periodicity of sequences and looked for relations between successive
elements or between elements separated by a regular period.
Representatious of sequences induced by the subjects agreed with those that
the model induced in a majority of cases.

There also were discrepancies, some of which involved relatively minor
details of programming, but two of which revealed significant processes in
humans not represented in the model. First, there was a closer integration
in the subjects' performance than in the program's between discovery of the
period of the sequence and induction of the pattern description. These are
distinct phases in the model, whereas the human problem solvers used
information in formi z the pattern description that they had picked up
during the phase of finding the period. Another discrepancy between human
data and Simon and Kotovsky's simplest model was that in some problems,
human solvers induced patterns with hierarchical structure, involving a
single low-level description and a higher-level switch that transited
between versions of the low-level structure. Hierarchical relation between
levels of pattern description is a basic structural feature of sequential
patterns that can play a dominant role in the induction process, as shown
by Restle (1970).

IV.B.2. Grammatical Rules. Next, we consider induction of the
grammar of a language. We discuss aspects of language acquisition that
relate directly to general issues in the theory of problem solving. Thus,
our discussion is selective, and does not fully represent the rich
literature on processes of language acquisiton, which deals with a much
broader range of issues than we consider here.

In acquiring the grammar of a language, the materials presented to a
learner include sentences of the language. The task is to infer a set of
rules that can be used to parse sentences that are heard and produce
sentences that are grammatical in the language. Thus, problem solving
involves search in a space of possible syntactic rules. The space of
stimuli includes the grammatical sentences that the learner hears, and the
task is to induce the rules that characterize the structure of those
sentences.

Human knowledge of the rules of grammar is implicit, in contrast to
the explicit formulas that are induced in the sequence extrapolation task.
This is seen in the facts that very young children have significant
knowledge of grammar (e.g., Brown, 1973), and that adults know grammatical
rules explicitly only if they have had special training. Because of the
implicit nature of grammatical knowledge, the product of language learning
is characterized as a set of procedures, rather than explicit formulas or
other descriptions of structure. The procedures acquired by learners of a
language enable the. to produce and understand sentences that agree with
the grammar of the language and to distinguish between grammatical and

i _- " I
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ungrammatical sequences of words. We refer to such a set of procedures as
knowledge of the grammatical rules, because the rules are built into the
procedures. As with much procedural knowledge, an individual's knowledge
of the rules in the form of procedures does not imply that he or she can
state what the rules are.

There is evidence from both empirical studies (e.g., Moeser & Bregman,
1972) and theoretical analyses (e.g., Wexler & Cullicover, 1980) that
grammatical rules are learned more easily if reference is provided for
terms in the language. This indicates that in the space of stimuli for
inducing a grammar, each sentence is paired with a situation that the
sentence describes. The functions of situations in facilitating induction
of grammatical rules probably include assisting in determining which words
belong together in constituent units (cf. Morgan & Newport, 1981).

We discuss an analysis of language acquisition by Anderson (1975,
1977), as an example that describes a definite information-processing
mechanism for acquiring knowledge of grammatical rules in the form of
procedures. Anderson's system includes learning processes that show how
semantic reference can facilitate the acquisition of grammar. Anderson's
learning system, called LAS for Language Acquisition System, induces rules
of grammar when it is given sentences in a language accompanied by the
semantic objects that the sentences are about. For example, if the
sentence, "The red square is above the small circle" is presented to LAS,
there also is a semantic network that represents an object with the
properties red and square, another object with the properties small and
circle, and the relation above between the two objects.

LAS has a procedure, used in its learning of grammar, that identifies
the objects in the semantic network that correspond to words in the
sentence and forms a structure showing the relations among those concepts.
This structure is used to determine constituent units of the sentence. In
the example sentence, red and square are bracketed together, because they
are properties of the same object, as are small and circle. The relational
term above is at a higher level in the bracketing that LAS forms. The
procedures that LAS acquires include rules for parsing noun phrases such as
the red square and the small circle, and sentences of the form NP Relation
NP. LAS also has a mechanism for generalization, so that similar
structures eventually come to be parsed by LAS with a single rule, and some
of these generalizations produce recursive parsing rules. The

generalization process sometimes produces incorrect rules that are too
general, and LAS also includes a mechanism of discrimination that restricts
the application of its language-processing procedures.

Viewed as a problem-solving system, LAS conducts search in a space of
procedures for producing and understanding sentences. (Note that we can
also view LAS as designing or constructing these procedures.) LAS's use of
the structure of situations provides significant constraints that are
needed for the search. As in Simon and Kotovsky's (1963) model of sequence
extrapolation, the constraints are applied to the generation of hypotheses.
Processes for modifying the induced procedures are available; the system
can generalize its procedures, which makes its performance more efficient,
and it can add restrictions to the application of procedures when it is
informed that use of a procedure has produced an error.



Section IV, Induction Page 97
Nonsequential Patterns

IV.C. Nonsequential Patterns

Now we discuss induction of patterns that are not sequential in
character. We begin with a simple case. We discuss analogy problems in
which one or two pairs of items are presented, related in some way. The
task is to form another pair with the same relation. There have been
extensive empirical and theoretical analyses of processes of solving
analogy problems. We then discuss more complicated cases, involving
induction of concepts in mathematics and of quantitative regularities and
structures in scientific domains, for which the available analyses are
primarily theoretical.

IV.C.I. Analogy Problems. The form of an analogy problem is
A:B::C:D, where D is often a set of alternative items that can complete the
analogy, with the subject required to choose one from the set. A and B are
related in some way, and the correct choice is a D item with the same
relation to C as B has to A. Solution of an analogy problem involves
search in a space of relations for one that can be applied to both the A:B
and the C:D pairs, or to one of the C:Di alternatives more successfully
than any of the others. Analogy problems are used commonly in tests of
intellectual ability. In factor-analytic studies, analogy problems
contribute most to the factor of induction, the single best predictor of
academic achievement (Snow, 1980).

Solution of analogy problems requires (1) a process for recognizing or
analyzing relations between pairs of stimuli, that is, between the A and B
stimuli and between C and each of the Di alternatives; and (2) a process
that compares relations found for the A:B pair with relations found for the
various C:I)i alternatives and chooses the C:Di relation that matches best
with an A:B relation. In the simplest case, the relation for A and B that
comes to mind first also applies to one and only one of the C:Di pairs.
When this does not occur, because relations :B found for A:B apply either
to more than one C:Di pair or to none of them, some further analysis of the
A:B pair is required. In such cases, A:B relations can be suggested by
relations that are found in considering the C:Di pairs.

We discuss two processes for solving analogy problems. In one
process, relations between pairs of items are based on information stored
in the problem-solver's memory. Memory-based analogy problems include most
verbal analogies, where solutions use relations between words that are
stored in memory or are inferred from word meanings. In the other process,
relations are determined by analysis of features of stimuli. When analogy
problems are composed of geometric diagrams, relations between pairs of
terms are found by comparing pairs of diagrams and identifying differences
between the members of each pair.

Relations Based on Semantic Memory. Solutions to many verbal
analogies are obtained by finding a relation between the A and B words
based on their meanings stored in semantic memory, and then finding a

S similar relation between C and one of the Di pairs. Reitman (1965)
formulated a model for verbal analogies based on activation of concepts in
a semantic network. Reitman's model, called Argus, solves problems such as
bear : pil :: chair : (foot, table, coffee, strawberry). Argus has
knowledge of words in a network of relational connections; for example
bear and 2l are both connected to animal through the relation
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superordinate. Activation and inhibition are transmitted through
connections between units.

Argus can perform according to different strategies. In one strategy,
the A and B terms are activated, and relations that become made active are
noted; then C is active, and the Di alternatives are activated in turn. A
goal is set for relations that are the same as the ones activated by the
A:B pair. When a C:Di pair activates those relations, that Di alternative
is chosen. In the example problem, after bear and pig are activated, their
superordinate relations to animal become active, because these lie on a
path between the activated terms. Then chair is activated along with the
Di alternatives in turn, with the goal of finding active superordinate
relations. This goal is achieved when table is activated, because both
chair and table are connected by superordinate relations to furniture.

Strategic factors in analogy problems were demonstrated in an
experiment by Grudin (1980). Grudin presented two kinds of analogy items:
one, called standard items, where a salient relationship between A and B
can be matched with one of the C:Di pairs; and the other, called
nonstandard items, where there is no salient relation between A and B, but
a relation between A and C matches one between B and a Di alternative. An
example is the item bird:air::fish:(breath, water, swim) in standard form,
which in its nonstandard version is bird:fish::air:(breathe, water, swim).
The nonstandard problems are more difficult, as measured by the time
required for a solution. However, if subjects can adapt their strategies
to look for relations between A:C and B:Di pairs, the difficulty of
nonstandard problems might be reduced. Grudin's sequence of problems
included five-item sets that were either all standard or all nonstandard,
followed by either a standard or a nonstandard problem. During solution of
a set of nonstandard items, a shift in strategy could occur, involving more
attention to the A:C and B:Di pairs. This would produce shorter times for
nonstandard problems following nonstandard sets than for nonstandard
problems following standard sets, and this result was obtained.

Thinking-aloud protocols in solution of verbal analogies were obtained
in a study by Heller (1979; also described by Pellegrino & Glaser, 1982).
Heller first presented the three terms of an analogy stem and asked the
subject to think aloud, including a statement of any A:B relations and
expectations about the answer that came to mind. Then four alternative
answers were presented individually with the subject asked to judge whether
each alternative was an acceptable answer, and why, and finally the
complete problem was presented for a final choice.

Heller's findings were consistent with the general features of
Reitman's (1965) hypotheses of solution strategies and of finding relations
by activation of a semantic network. Strategic factors provide an
interpretation of individual differences in performance, and the activation
hypothesis is supported by a finding of variability in solution sequences.

Heller's major finding was a striking difference between groups of
subjects in their adherence to the task constraints of analogy problems.
The main constraint of an analogy is that the relationships between A:B and
C:Di should correspond. If a subject chooses a Di response on the basis of
a relation to C without regard to the correspondence of that relation to
the A:B relation, then the analogy constraint has not been applied.

... ..... ... _ _ _ _ _ _ i-- - .- ,
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Subjects who had good overall performance mentioned the similarity or
difference between an A:B relation and at least one of the C:Di relations
on nearly all problems. In contrast, subjects with poorer overall
performance were inconsistent in applying the constraint of a matching A:B
and C:Di relation, frequently accepting answers based on a relation between
Di and C, or with other terms in the analogy of a quite diffuse kind. To
account for the differences among subjects in adherence to the task
constraints, Heller proposed that individuals differ in the strengths of
goals that are related to general solution strategies. In Reitman's model,
this would correspond to the better subjects' having strategic goals that
were activated more strongly, o r to differences in the degree to which
goals became inactive or were interfered with by other processes.

Heller's protocols also revealed considerable variability in the
sequence of steps in solving the problems. In a majority of cases,
subjects identified an A:B relation and then thought about C:Di
alternatives in the context of that relation. There also were cases in
which a relation between A and B came to mind as a subject thought about
one or more of the C:Di relations. Such solution sequences occurred in
about 20% of the problems for which subjects adhered to the analogical
constraints. Reitman's assumption that relations are found by activation
of a semantic network provides an interpretation of the variability of
solution sequences, since activation of a relation in the context of a C:Di
pair would facilitate its recognition for A:B in some cases where A:B did
not elicit it.

Further information relevant to individual differences was obtained in
a study by Pellegrino and Glaser (1982). Analogy items with single D
alternatives were presented and subjects judged the items as true or false.
Pellegrino and Glaser used an experimental and statistical method
introduced by Sternberg (1977), in which the four terms are presented in
sequence, with the subject making a response to request the addition of
each term. The latencies of these responses are used to estimate the time
for various component of the solution process, according to a general
model. Each latency includes time to encode the new item. When B is
presented, the latency includes time to infer one or more relations between
A and B. When C is presented, the latency includes time to map A:B
relations onto the C term. When D is presented, C:D relations are inferred
and compared with the A:B relations. It was assumed that the comparison
process could have three outcomes. The relations could correspond well,
leading to a "true" response. The lack of correspondence could be so great
that the subject would immediately reject the analogy and give a "false"
response. The subject could judge that the correspondence was
indeterminate and engage in a more extended analysis, possibly including
review of the A and B terms to find new relations.

Four sets of items were used in the study. There were positive items,
which were judged to be appropriate analogies, and negative items, which
were judged to be inappropriate. Within each of these sets, there were
items in which the C and D terms were strong associates and other items in
which the C and D terms were not associates. A weak C-D association for a
positive item, or a strong C-D association for a negative item, was
expected to make the item more ambiguous and increase the frequency of
extended analyses in the final component of the solution process. The
results supported this expectation; estimates of the proportion of

- -- i , I I ..... i- I --I
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problems with extended analyses were higher for weakly associated positive
items (.55) than for strongly associated positive items (.23), and for
strongly associated negative items (.19) than for weakly associated
negative items (.07). A similar correlation of item difficulty with time
spent in the final stage of solution was obtained by Barnes and Whitely
(1981).

Pellegrino and Glaser's major finding was that the frequencies of an
extended analysis were correlated with the subjects' overall ability in the
analogies task. The subjects were college students divided into groups
with relatively high and relatively low scores on a standard analogies
test. The estimates of time for the various information-processing
components were generally longer for the low-ability subjects. But the
most striking difference was in the frequency of engaging in an extended
analysis, which was more than twice as high for the low-ability than for
the high-ability subjects. Pellegrino and Glaser concluded that the
low-ability subjects more frequently arrived at the final stage of
processing an analogy with an inadequate representation of the relations
among the other terms, and therefore had to reconsider the A, B, and C
terms more frequently. (A similar difference in the solution process was
found by Snow, 1980, in spatial reasoning tasks in which the items are
diagrams and reexaminations of terms can be observed by recording eye
movements.) In verbal analogies, this difference in processing could be due
to differences in the information in semantic memory, differences in the
activation process, or differences in strategy with low-ability subjects
more likely to want to see the final term to facilitate recognition of A:B
relations. This conclusion is consistent with Heller's finding that
students with lower ability in analogies often choose responses that
violate the constraint of an analogy problem. They frequently lack a
response that satisfies the constraints, and are likely to choose a
response on some other basis.

In Reitman's (1965) model of verbal analogy solution, relations are
relatively discrete components of semantic memory. This characterization
probably is correct for most verbal analogies, but there are cases in which
it does not apply. An example was studied by Rumelhart and Abrahamson
(1973), who studied solution of verbal analogy problems in a single
semantic domain, the names of animals.

Analogies composed of animal names have two properties that are
different from most verbal analogies. First, they depend on more than one
relation, and the relations are combined somehow in solving the problem.
Second, the relations differ in degree, rather than just being present or

absent.

An example that illustrates multiple relations is the following:
rabbit:sheep::beaver:(tiger,donkey). Donkey seems the better answer,
perhaps because while a relationship involving size is similar for
beaver:tiger and beaver:donkey, and both are similar to the size relation
for rabbit:sheep, there also is an additional difference for beaver:tiger
-- tigers are ferocious while beavers are not, and thus the beaver:donkey
pair matches the rabbit:sheep pair better, which also lacks a difference in
ferocity. The graded nature of relations is illustrated by
rabbit:beaver::sheep:(donkey,elephant). Donkey seems the better answer.
The judgment seems to depend mainly on the sizes of the animals, and
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beavers are larger than rabbits, but the difference seems not to be large
enough to make sheep:elephant seem appropriate.

To represent differences of graded magnitudes that can be combined
easily, it is convenient to use a spatial representation. In such a
representation, the dimensions of the space correspond to salient ways in
which items differ from each other. Each item is located at a point in the
space. The coordinates of the point correspond to the values that the item
has on each of the dimensions.

A spatial representation of a set of items can be obtained by

presenting pairs of the items to subjects and asking them to judge how
similar the members of each pair are to each other. These judgments of
similarity are used as estimates of the distances between pairs of items,
and items are located in the space so that the distances between points are
as close as possible to the estimates obtained in the experiment. In the
method of choosing the spatial representation, called multidimensional
scaling, an attempt Is made to represent the items in one dimension; if
that is unsuccessful two dimensions are used, and so on until a space is
found with the points located so that interpoint distances agree
satisfactorily with the similarity judgments given by subjects.

Henley (1969) obtained judgments of similarity for pairs of animal
names, and obtained a spatial representation with three dimensions: size,
ferocity, and a third dimension that probably involves a mixture of
attributes, including similarity to humans. These results were used by
Rumelhart and Abrahamson (1973) in their study of analogy problem solving.
The relation between two items A and B corresponds to the vector that
connects the points for A and B in the spatial representation. The vector
represents the combination of differences in the three dimensions between
the two items; for example, the vector from beaver to tiger represents a
moderate increase in ferocity, a large increase in size, and very little
difference in "humanness." In Rumelhart and Abrahamson's model, to solve an
analogy, A:B::C:(Dl,D2,D3,D4), the A--*B vector is translated to C, and the
probability of choosing each of the Di alternatives is a function of its
distance from the ideal point defined by the end of the vector. In one

experiment, the model provided accurate predictions of the frequencies of
subjects' rankings of response alternatives in analogy problems. In
another experiment, fictitious animal names were locations in the spatial
representation. These fictitious names were used in analogy problems for
which subjects received feedback, and the subjects induced features of the
fictitious animals, responding appropriately to new analogies involving
their names.

Figure 12 here

Relations Based on Feature Analysis. In a geometric analogy problem,
the terms are diagrams that differ in various ways. An example is in
Figure 12. The best answer apparently is D2. A and B are related by
deletion of the dot and moving the rectangle from inside the triangle to
the left of the triangle. C and D2 are related in a similar way: the dot
in C also is deleted, and the Z is moved from inside the segment of the
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Figure 12. A geometric analogy problem (from Evans, 1968).
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circle to the left of the segment.

As Figure 12 illustrates, the relation between a pair of diagrams can
have several parts, corresponding to components of the diagrams that
differ. Some of the differences can be quantitative, for example, the
amount of rotation of a component or the amount by which the size of i
component is increased or decreased. In the domain of analogy problems
involving animal names, these characteristics of composite and quantitative
relations make a spatial representation of items a reasonable one. A
spatial representation is not economical for geometric analogies, because
there are too many ways in which diagrams can differ. In the domain of
animal names, a satisfactory approximation is that all pairwise relations
can be characterized by differences on three dimensions, but the domain of
geometric diagrams does not have such a simple structure.

In geometric analogies, relations are found by examining features of
the diagrams, rather than by retrieving information from memory, as with
verbal analogies. A model of solving geometric analogy problems,
therefore, has two components: one component that analyzes diagrams and
identifies relations between them, and another component that compares the
relation of A:B with relations of the C:Di alternatives and chooses the
best match.

Evans (1968) developed a model that solves geometric analogy problems.
The program is given descriptions of the diagrams that specify the
locations of straight lines, curved li s, and closed figures. From these
descriptions, relations among components are derived; for example, that
one figural component is inside another, or is above it in the diagram.

The model then compares its representations of the diagrams in pairs
and forms descriptions of relations between the members of the pairs.
These relations are in the form of transformations -- that is, changes in
one diagram that would make it the same as the other diagram in the pair.
For example, a component in one diagram might be removed, or a component

f might be added or a component might be changed in size or rotated, or the
relative positions of two components might be changed, say, by moving one
from inside the other to above the other.

The relation between A and B is then compared with the relations
between C and each of the Di altt.:natives. This comparison involves
matching components of A with components of C and determining which of the
transformations in the A:B relation also occur in the C:Di transformation.
The Di alternative is chosen for which the greatest number of
transformations can be made to correspond.

Evans (1968) developed his model as a project in artificial
intelligence, rather than as a simulation of human problem solving, but
even so, the model has features that seem plausible as psychological
hypotheses. One such feature is a suggestion that problems with more
complex diagrams or relations between diagrams should be more difficult for
humans to solve. In the model, diagrams are more complex if they have more
components, and relations are more complex if there are more
transformations, that is, if there are more changes in components between
diagrams that are related. These factors were varied in an experiment by
Mulholland, Pellegrino and Glaser (1980), and both had significant effects.
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Problems that had diagrams with more components and problems with more
transformations required longer times for solution.

In human solution of geometric analogy problems, we should expect some
of the same characteristics of performance that have been observed in
solution of other analogy problems. An important factor in verbal analogy
problems, discussed above, is the processing required when the subject's
representation of the A:B relation and the C:Di relations are not
sufficient to provide a determinate answer and further processing is
needed. Findings by Sternberg (1977) show that this factor is important in
geometric analogy problems as well. Sternberg measured the time to solve
problems presented after part of the problem had been shown, enabling part
of the processing to occur. He used the differences between conditions as
estimates of the times for components of the solution process. In
comparing subjects with differing levels of general reasoning ability,
Sternberg found a large difference in the time required to process the C:Di
alternatives in geometric analogy problems, with much of the difference
attributed to a process of comparing alternatives when prior processing has
not provided a unique solution.

IV.C.2. Inductive Problems in Mathematics and Science. Cognitive
analyses have been developed in the form of computer programs that invent
new mathematical concepts, based on properties of examples, and that induce
formulas and structures from data in scientific domains. We briefly
discuss three models: one that invents new mathematical concepts, one that
induces formulas from sets of quantitative data, and one that induces
molecular structure from data of mass spectroscopy.

Invention of Concepts in Mathematics. A program called AM (Lenat,
1982) generates examples of concepts that it knows and develops new
concepts, based on properties of the examples. The main domain in which AM
was run is elementary mathematics. AM was given initial concepts involving
sets and developed a variety of concepts involving numbers. For example,
ALM developed concepts of addition and multiplication, developed the concept
of primes, and arrived at a conjecture that every number is the product of
a unique combination of prime numbers.

It is useful to compare AM's task to the standard experimental task of
concept induction, such as that studied by Bruner et al. (1956). In

standard concept induction, a set of examples is provided by the
experimenter, with some positive examples and some negative examples
determined by a rule, and the subject's task is to Induce the rule.
Hypotheses are generated by the subject and tested with information about
further examples until the correct concept has been found. Each hypothesis
that is generated is itself a concept, in the sense that it provides a rule
for classifying the stimuli. The main problem-solving work is in finding
which rule is correct.

AM's task is not defined as well, in two respects. First, the
examples are not provided by an experimenter, but rather are produced by
AM. Second, AM does not have a specified criterion of correctness for the
concepts that it generates. Instead, AM evaluates its concepts by some
criteria of importance, based in part on how easy it is to generate
examples of the concept.

4.i
V . . . . I I , i I l -
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AM's knowledge of concepts is organized with a set of facets,
including some that are standard for semantic networks, such as

generalizations, specializations, and examples, and others that are
especially useful in the domain of mathematics, such as objects that are in
the domain or range of a function. Facets also hold procedural
information, such as methods for testing whether an object is an example of
the concept. AM's reasoning activity is organized as a set of tasks, each
involving a concept and one of its facets. Examples of tasks include
filling in examples of a concept or forming a generalization or a canonical
representation of a concept. Tasks that are proposed are placed an an
agenda, and choice of a task to perform is based on an evaluation of the
reasons for the task, including the importance of concepts for dhich the
task would contribute new information. Heuristics that contribute to the
development of new concepts include efforts to form a more general concept
if an existing concept has very few examples, and to form new
representations that clarify the relations between concepts.

We note that AM does not really do mathematics in the usual sense. It

has no concept of deductive consequence, and thus does not develop a body
of concepts and principles with a formal structure. Even so, it provides
an example of a system that goes well beyond the knowledge that it is given
initially, moving into a conceptual domain that is quite distinct from that
of its initial concepts.

Table 10 here

Inducing Quantitative Regularities. A system called Bacon induces

formulas from numerical data (Langley, 1981; Langley, Bradshaw & Simon,
1980). The data are values of some variables that are controlled and other
variables that are measured; a simple example is in Table 10. The goal is
to find a formula that describes the relation between the variables, in

this case distance and time. The two components of the problem space are
the subspace of stimuli, the set of data, and the space of structures, the
set of formulas with the variables that are included in the data.

A simpler approach than Bacon's is adequate for relatively simple

induction problems. This simpler approach tries to fit alternative
formulas that are known in advance. For example, for Table 10, a linear
function can be tried, and the discrepancy that is noted shows that there

is positive acceleration. This suggests trying a quadratic formula, which
fits the data. Generate-and-test methods of this kind have been analyzed
by Huesmann and Cheng (1973) and by Gerwin (1974), with supporting

experimental data.

The task of inducing formulas can become unmanageable for a simple
generate-and-test method if there are several variables that can be related
in complex ways. For example, Bacon is able to induce Coulomb's Law,
relating electrical force to the charges on two bodies and the distance
between them: f - qlq 2/d2; and a formula for the electrical current in a
wire connected to a battery and a metal rod, depending on the temperature
differential of the bar, the internal resistance of the battery, and the
length and diameter of the wire: I - T/(R + L/D ). The set of formulas
that includes these is extremely large, and it seems unlikely that simple
equation fitting would be an effective method for inducing formulas of this
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Table 10

Data for a Simple Induction Problem

Time Distance

1 0.96

2 3.92

3 88

4 15.68

5 24.50
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complexity.

Bacon's search method uses properties of the data to guide formation
of hypotheses. We have discussed other induction systems with this
property, including the concept-induction strategy of focussing, described
by Bruner et al. (1956), the method of inducing patterns in letter
sequences studied by Simon and Kotovsky (1963), and AM's heuristics for
generating new concepts based on properties of examples. Bacon's
heuristics involve properties of quantitative data and thus differ, as one
would expect them to, from the heuristics of other systems such as AIM,
where the data involve categories of examples and sets of defining
features. Bacon's use of data has the further interesting feature of
creating new data in the process of evaluating its hypotheses. In
evaluating a hypothesis, Bacon calculates values of a new function of
available data, and if the hypothesis does not succeed, those values become
part of the data available to Bacon for further problem solving. Thus, an
attempt to solve the problem may be unsuccessful, but it leaves new results
that may be instrumental in a later attempt that succeeds.

Bacon's basic method is to search for a function of data that gives
constant values across experimental conditions. As an example, the Formula
for the data in Table 0 i, d - kt2 , where k is a constant; the form in
which Bacon 1tscovers the law is d/t2 - k.

Bacon uses heuristic rules to form hypotheses, consisting of functions
of variables in its data base, that might give constant values. For
example, if two quantities increase or decrease together, Bacon forms their
ratio as a new quantity to be considered. If one variable decreases as
another increases, Bacon forms their product as a new quantity. These
heuristics, and another that forms linear functions of variables, enable
Bacon to induce relatively complex functions. (The first two are
sufficient for the problem in Table VO. First, note that t and d increase
together, and form the ratio t/d. This decreases with t, so form the
product t2/d. This quantity is constant across the observations.)

Some other heuristic methods are also used, inelluding definition of
"intrinsic variables" as properties of objects that are associated with
constant values of quantities, and attempts to find a common divisor for
values of intrinsic variables that have been Induced. These heuristics
enable induction of properties such as the resistances of different wires
from measurements of current, and the atomic and molecular weights of
chemicr" lements from data about weights and volumes of elements and
compe ivolved in chemical reactions.

ted previously that induction problems can also be
unde. "oblems of design, especially when the structures that are
induct pressed explicitly as formulas. This view is particularly
appropriaLe .a the case of Bacon's induction of formulas. Consider the
task as construction of a formula using symbols for the variables in the
problem. Bacon's heuristics then are rules for forming combinations of the
symbols that may satisfy the problem criterion. If a formula does not
solve the problem, it may provide part of the formula that is needed.
Thus, the process of search with construction of partial solutions,
characteristic of design problems, provides an appropriate characterization
of Bacon's process of induction.

4
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Bacon is not intended as a complete simulation of cognitive processes
in scientific research, where hypotheses about causal mechanisms often play
a critical role in decisions to measure variables or to examine
quantitative relationships. Even so, it provides a demonstration that
quite simple heuristics are sufficient to produce quite complex inductive
conclusions from quantitative data, and it is reasonable to suppose that
these heuristics correspond to significant components of complex scientific
reasoning.

Inducing Molecular Structure. Another scientific task that has been
investigated is induction of the molecular structure of organic compounds.
A system called Dendral induces molecular structure from data in the form
of mass spectra (Lindsay, Buchanan & Feigenbaum, 1980). A mass spectrum is
a set of quantities of the fragments of various sizes that are produced
when molecules of a substance are bombarded by electrons.

Like AM and Bacon, Dendral performs induction using heuristic search.
An important difference is that Dendral uses search heuristics that are
based on principles that are specific to the domain of organic chemistry,
whereas AIM's methods apply in any domain with a structure of categorical
concepts, and Bacon's methods can be applied to any quantitative data.

Dendral's method of induction has three main stages. First, the
chemical formula of the compound is inferred from features of the mass
spectrum. Then hypotheses about molecular structures are generated with
constraints based on knowledge of the class of compounds that the substance
belongs to. Finally, the hypotheses are tested by comparing their
implications with the quantitative details of the mass spectrum, and the
hypothesis is chosen that provides the best agreement with the data.

The data used to infer the chemical formula are the peaks in the mass
spectrum. The largest mass represented probably is the mass of the
molecular ion, or may be smaller than the molecular ion by one fragment.
Differences between peaks usually correspond to the masses of fragments
that are broken off in the bombardment. Dendral uses the value of the
largest peak and the interpeak distances, along with knowledge of
chemistry, to infer one or more chemical formulas that are consistent with
the spectrum.

Dendral's next task is to generate possible molecular structures, with
the ions in the formula arranged in various ways that are consistent with
known possible arrangements. There are many millions of possibilities for
most problems, so Dendral formulates constraints based on knowledge of the
class of compounds that the sample belongs to. With the constraints,
Dendral constructs hypotheses about molecular structure with a method that
first determines the maximum number of rings in the structure, then
constructs the possible partitions of ions into rings and remaining
components, and finally constructs the possible structures for each

$: possible partition.

Finally, Dendral tests its many hypotheses, using the quantitative
details of the mass spectra. In the different hypothesized structures,
different components are separated by different numbers of bonds;
therefore, there are differences in the likelihoods that they will occur
together in a fragment. Assuming that fragments are produced by breaking
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one or two bonds at once, predictions are made about the relative amounts
of material to be found at each peak in the spectrum, and the structure
that fits the data best is chosen.

Note that Dendral's task, like Bacon's, involves constructing an
explicit formula to represent the structure that it induces. Thus its
method can also be considered as solving a problem of design, where the
materials for the construction are symbols that represent the atomic
components of chemical compounds, and the chemical knowledge that it uses
constrains the search for an arrangement of those materials that satisfies
the criterion of agreement with the mass spectrum.

IV.D. Diagnostic Problem Solving

We conclude this section by discussing problem solving that involves
troubleshooting in electronics and diagnosis in medicine. In these tasks,
the problem solver has a space of stimuli consisting of one or more
symptoms and further information that can be obtained by performing tests.
The space of structures is a set of possible causes of the symptoms, faulty
components in electrical circuits or disease states in the case of
medicine.

In addition to its characteristics of inductive problem solving,
diagnostic problem solving also has components of operational thinking,
because it is based on the goal of curing the patient's illness or
repairing the device. Thus, the information and conclusions in the
diagnosis are directed toward making a decision about a remedial treatment
that should be applied.

IV.D.1. Troubleshooting. The task in troubleshooting is to determine
which of the many components of an electronic system is operating
incorrectly, causing the system to function improperly. There may be more
than one fault, but it simplifies the problem greatly to assume that there
is a single fault in the system.

In a general way, troubleshooting resembles the task of inducing
categorical concepts when the subject chooses the stimuli for which
information is given. In concept induction, the problem solver obtains
information by asking whether a specific stimulus is a positive or a
negative instance. In troubleshooting, information is obtained by taking
readings of voltage or current at specific locations in the circuit. In
both cases, there are many possible hypotheses to be considered, but the
set of possibilities can be specified - in concept induction, it is the
set of logical combinations of the stimulus attributes, and in
troubleshooting, it is the set of possible faults of components. These
similarities of the tasks are correlated with an important resemblance in
the effective methods of working on the problems. The focussing strategy
in concept induction uses information obtained about instances to eliminate
classes of hypotheses, rather than considering each hypothesis individually
as is done in the less effective scanning strategy (Bruner et al., 1956).
Similarly, in troubleshooting, an important component of strategy is to
conduct tests that will enable elimination of sets of possible faults from
consideration. Use of this strategy is enabled by general knowledge about
electronic components as well as by knowledge of the specific circuit in
the problem, as we discuss below. This requirement of knowledge to support
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the process of induction is analogous to the role played in concept
induction by knowledge of the alternative logical forms (conjunction,
disjunction, etc.) and the truth-table combinations that correspond to them
(Dodd et al., 1971), although the knowledge required in troubleshooting is
considerably more elaborate.

A model of troubleshooting is included in a system called Sophie that
provides computer-based instruction for trainees in electronics maintenance
(Brown, Burton & deKleer, 1983). The troubleshooting system provides a
model for the student to observe in learning how to diagnose faults in a
circuit. The student can specify a fault in the circuit, and Sophie then
can solve the problem of diagnosing the fault, performing a series of tests
to obtain readings of current or voltage at various points in the circuit,
forming hypotheses about the fault, and eventually arriving at a decision
about it. Sophie has general knowledge about electronics and an explicit
representation of strategy that enables it to provide explanations to
students for tests that it is performing, regarding both principles of
electronics and the strategic purposes of its activity. Sophie's
troubleshooting knowledge is also used to evaluate the problem-solving
performance of students, by providing a series of problem-solving steps
that can be compared with the steps taken by students.

Sophie's knowledge for troubleshooting has four main components: two
components of electron.cs knowledge, a component of knowledge for making
specific inferences and a component of strategic knowledge. One component
is general knowledge about electronics in the form of "experts" that have
information about characteristics of different kinds of electronic
components such as resistors and diodes. These experts can use data
obtained from readings to calculate values for other variables, assuming
normal functioning of components of the circuit; these inferred values
then can be compared with actual readings of those variables.

A second component of Sophie's knowledge is information about the
specific circuit that is used for instruction. The circuit is represented
hierarchically as a set of modules with submodules and components.
Possible functional states of each module and component are represented,
including normal functioning and possible fault states. Experimental

evidence obtained by Egan and Schwartz (1979) is consistent with a

hypothesis that human electronics experts represent circuits in ways
similar to Sophie's. Egan and Schwartz showed that experts encode
information from circuit diagrams rapidly, similar to performance by
experts in other domains such as chess (see Section III.B), and that
functional modules made up of components that are spatially contiguous in
the diagram play an important role in the performance.

A third part of Sophie's knowledge involves specific actions that
occur during troubleshooting. This knowledge is in the form of rules for
making inferences about the states of modules and components of the
circuit. Readings are used to eliminate hypotheses about faults by showing
that a module is functioning normally, and for propagating inferences in
the hierarchical representation; for example, if a component is faulted,
then all the modules that contain that component must also be faulted.
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The fourth compotnent of knowledge is Sophie's strategy, a
breadth-first search method with backtracking. Sophie considers all the
possible states that can occur, according to its representation of the
circuit, and eliminates possible fault states on the basis of readings that
are consistent with normal functioning. It assumes normal functioning of
components until there is a reading that conflicts with that assumption;
however, it keeps a record of the assumptions used in its inferences, and
if information contradicts an assumption made earlier, inferences based on
that assumption are revised.

IV.D.2. Medical Diagnosis. In medical diagnosis, as in
troubleshooting, a system -- in this case, a human body -- is functioning
improperly, and the inductive task is to infer the cause of the
malfunction. Also as in troubleshooting, the purpose of the diagnosis is
to determine a treatment that can remedy the malfunction, and the
diagnostic activity is conducted in a way that provides information
relevant to choosing a treatment.

Several systems have been developed that solve diagnostic problems in
various domains of medicine, including diagnosis of infectious agents and
prescription of antibiotics (Shortliffe, 1976), prescription of digitalis
therapy for cardiac patients (Silverman, 1975), and diagnosing and
prescribing treatment for varieties of glaucoma (Weiss, Kulikowski & Safir,
1978). (For a review, see Ciesielski, Bennett & Cohen, 1977.) We discuss
one system, Caduceus, which performs general diagnosis. We also discuss
some empirical studies of diagnostic problem solving by physicians with
varying amounts of training and experience.

A Model of Knowledge for General Diagnosis. Knowledge used in general
medical diagnosis has been investigated in the context of a model named
Caduceus (Miller, Pople & Myers, 1982; Pople, 1982). The knowledge that
Caduceus has for diagnosing diseases is similar in important ways to the
knowledge used by Sophie for diagnosing faults in electronic circuits. It
is hierarchical in form, enabling systematic search in the space of
hypotheses. Internist also has rules that infer hypotheses based on

symptoms and test results and that propagate inferred information using the
hierarchical structure of its knowledge.

Caduceus's knowledge about diseases is of two kinds, organized in two
separate but related graph structures. One of these, called a nosological
graph, provides a taxonomy of diseases based on the organs of the body that
are involved and on etiological factors. This graph provides groupings of
diseases based on their manifestations. The other knowledge structure,
called a causal graph, contains information about disease states and
processes. The causal graph contains technical concepts of pathology that
refer to states of disease, such as cardiogenic shock.

Caduceus has the goal of identifying one or more disease entities that
provide a complete explanation of a set of symptoms and findings in the
case. Subproblems are formulated from findings that are not yet integrated
in an explanatory network; these constitute diagnostic tasks that are
generated by the system. Identification of the disease depends mainly on
the nosological graph; this hierarchical structure is used in a top-down
search to narrow the possible disease entities. The information about
disease states and processes in the causal graph provides links between

_____-
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hypothesized disease entities and the specific symptoms and test results
that are available. Caduceus concludes its diagnostic analysis when an
explanatory network has been developed that includes all the available
symptoms and findings.

Empirical Studies of Diagnostic Performance. An extensive study of
performance in diagnostic problems was conducted by Feltovich (1981; also
described in Johnson, Duran, Hassebrock, Moller, Prietula, Feltovich, &
Swanson, 1981). The results consistent were the general properties of the
Caduceus model. They also provide information about characteristics of
knowledge for diagnosis at different levels of experience and expertise.
Feltovich obtained problem-solving protocols for cases in pediatric
cardiology from individuals varying in experience from fourth-year medical
students who had just completed a six-week course in pediatric cardiology
to two professors who had more than 20 years experience in the
subspecialty. Information from five cases was presented serially and the
physicians gave their hypotheses and other thoughts about the cases,
attempting to arrive at a correct diagnosis.

The performance of experts indicated knowledge that differed from that
of novices in several ways, consistent with the general features of expert
knowledge discussed in Section III.B. The major difference was that
experts had more integrated knowledge about diseases. Experts also had
more detailed knowledge of variations of disease states and more precise
knowledge of relationships between diseases and symptoms. This was
indicated in the performance of one advanced expert by his mentioning
groups of hypotheses that were supported by the findings presented first,
with later information used to narrow the range of possibilities. The
other advanced expert used a more depth-first strategy, proposing a likely
hypothesis based on preliminary findings, but modifying the hypothesis in a
flexible way when later evidence provided counterindications. The
knowledge of novices was primarily in the form of a few specific disease
forms used in textbook cases. Novices responded to early evidence by
proposing reasonable hypotheses, but were less likely to recognize the
significance of later evidence and change their hypotheses when this was
indicated. The sets of hypotheses mentioned by novices during problem
solving were significantly smaller than those of the experts.

Similar conclusions regarding expert knowledge for diagnosis were

supported in a study of expert and novice radiologists (Lesgold, Feltovich,
Glaser & Wang, 1981). Lesgold et al. found that in reading x-ray films,
experts generated representations in a three-dimensional system, using
salient features to generate initial hypotheses that were refined or
modified on the basis of more detailed features. Knowledge for recognizing
features associated with abnormalities appeared to be well integrated with
general knowledge of anatomy. The integration of experts' knowledge was
evidenced by their ability to use features noted early as constraints on
later interpretations (cf. Stefik, 1981). Interpretations of novices (in
this case, first-year residents in radiology) depended more on finding an
explanatior for a few features, with a tendency for other details to be
assimilated to the initial hypothesis rather than used to generate
alternative hypotheses or modifications.

i
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It is important to note the close similarity of conclusions from these
studies of expert diagnosticians in medicine and the studies of expert
performance in otlher problem-solving domains, especially physics and chess.
Present findings indicate that a major source of expert performance is the
expert's ability to represent problems successfully, and that this results
from the expert's having a well integrated structure of knowledge in which
patterns of features in the problem are associated with concepts at varying
levels of generality, enabling efficient search for hypotheses about the
salient features of the problem that cannot be observed directly as well as
methods and operations to be used in solving the problem.

-( i I . .. -
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V. Evaluation of Deductive Arguments

The relation between human reasoning and formal logic has long been a
subject of discussion and debate, and for some decades, a subject for
experiment as well. It is generally agreed that human "logical" reasoning
does not always conform to the laws of formal logic. Formal logic is a
normative theory of how people ought to reason, rather than a description
of how they do reason. It is important, then, to develop a descriptive
theory of human reasoning to compare and contrast with the logic norms.

Experiments aimed at developing a theory of human reasoning have
mostly set tasks of judging the correctness or incorrectness of formal
syllogisms. These tasks require application of the rules of deductive
argument which are special in some ways, and correct p rformance depends on
the subject's knowledge and use of the tecnnical rules of formal deductive
inference. However, the processes used in these tasks do not differ in any
fundamental way from those involved in problem solving in other domains.
Psychological analyses provide no basis for a belief in deductive reasoning
as a category of thinking processes that differ from other thinking
processes, other than in the special set of operators that are permitted in
rigorous deductive arguments. As Woodworth put the matter, "Induction and
deduction.., are distinguished as problems rather than processes"
(Woodworth, 1938, p. 801).

We discuss studies of two tasks. First, we discuss propositional and
categorical syllogisms, which present arguments in the sentential and
predicate calculus. Subjects frequently make errors in evaluating these
syllogisms, and research has attempted to explain why the reasoning process
differs from correct logical inference. Second, we discuss linear
syllogisms, which present arguments that depend on transitivity of order
relations. Subjects make the transitive inferences in these tasks without
difficulty, and psychological analyses have focused on the cognitive
representation of information in the syllogisms.

V.A. Propositional and Categorical Syllogisms

Subjects in experiments on propositional or categorical syllogisms are
asked to judge the validity of arguments such as the following (invalid)
propositional syllogism:

If I push the left-hand button, the letter T appears.
I did not push the left-hand button.
Therefore, the letter T did not appear.

The major premise states what will happen if the button is pushed. It says
nothing about wmat will or will not happen if the button is not pushed.
Hance the conclusion does not follow from the premises. Yet in a typical
experiment (Rips & Marcus, 1977) a fifth of the subjects accepted this as a
valid syllogism.

Categorical syllogisms in tne predicate calculus involve statements
containing the terms some, all, and no. An example of a (valid)
categorical syllogism is

Some jewels are diamonds.
All diamonds are valuable.
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Therefore, some jewels are valuable.
Again, human subjects make frequent mistakes in judging whether certain
kinds of categorical syllogisms are valid. For example, subjects are very
likely to mistakenly judge that the following argument is a valid syllogism
(Johnson-Laird & Steedman, 1978):

Some As are Bs.

Some Bs are Cs.
Therefore, some As are Cs.

In experiments on syllogistic reasoning, the type of syllogism
presented is most commonly taken as the independent variable, and the
numbers of subjects making errors on syllogisms of different kinds is
measured. By comparing the error rates for different kinds of syllogisms,
the experimenter seeks to formulate and test hypotheses about the cognitive
processes that suojects use to make such syllogistic judgments.

For example, subjects will often accept, "No As are Bs and no Bs are
Cs, tnerefore no As are Cs;" while they will almost always reject, "No As
are Bs and no Bs are Cs, therefore all As are Cs." Yet both syllogisms are
equally invalid. Such errors of reasoning have sometimes been attributed
to an "atmosphere effect." In the example above, "no" appears in the
premises, therefore "no" is more acceptable than "all" in the conclusion

(4oodworth & Sells, 1935). Alternatively, some investigators have claimed
chat the reason for these errors is that the quantifiers and connectives,
all, some, no, if...then, and, or, do not have the same meaning in natural
language as they do in formal logic (Braine, 1978). According to this
hypothesis, since the experimenter judges the correctness of answers by
their conformity to the rules of formal logic while the subjects are using
the natural language meanings, errors will be made when the two kinds of
meaning diverge.

Errors and latencies in reasoning tasks depend not only on the form of

the syllogism, but also on whether or not it has meaningful content
(wilkins, 1928). Thus, subjects may respond differently to the syllogism,
"if some As are Bs and some Bs are Cs, then some As are Cs," and the
syllogism "If some birds have blue eyes and some blue-eyed creatures are
human, then some birds are human."

In general, subjects' error rates are lower when syllogisms have
meaningful content, but there is an important class of exceptions.
Subjects often reject valid syllogisms when the conclusions are contrary to
facts known to them. "If all horses have four feet and all fish are
horses, then all fish have four feet," may be rejected by subjects who know
that fish are footless. The rate of rejection rises when subjects react

emotionally to the conclusion. "If drug addiction is a disease and
diseases should not be punished, then drug addiction should not be
punished," will more likely be rejected by subjects who support strong
measures against drug usage than those who do not (Janis & Frick, 1943;
Lefford, 1946). Conversely, subjects often accept invalid syllogisms when
the conclusions are consistent with their knowledge about the world or
their preferences.
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All of these findings must be stated as "tendencies," since many
subjects who makes errors on some syllogisms of a certain form do not make
such errors consistently. Moreover, there are large individual differences
among subjects. For example, subjects who have had training in formal
logic generally make fewer errors -- not surprisingly -- than subjects who
have not had such trairing.

While human syllogistic reasoning conforms to some broad
generalizations of the sorts that have been mentioned already, the findings
derived from experiments are complex and confusing. In the past several
years, a few investigators nave sought to cut through the confusion by
creating models of the inference process or some components of it. The
attempt to create such models has revealed features of the reasoning task
that had not been entirely obvious.

First, any one of a wide range of strategies might be used by subjects
to solve the problems, and there is no reason to believe that all subjects
use the same strategies. Subjects who reason by vague verbal analogies
could succumb to the atmosphere effect, while other subjects who create
semantic images of the propositions and reason by operating on those images
might make quite different errors. (Certain syllogisms might require the
creation of images more complex than a subject could handle in memory.)
Subjects' knowledge of logical inference can be embedded in formal axioms
or in inference rules, with different consequences for the likelihood of
error. The axioms that define connectives or the inference rules might
conform to some natural logic that deviates from the formal logic of the
textbooks.

Several quite successful recent modelling efforts have used the idea
that evaluation of syllogisms is a form of problem solving similar to that
discussed in Section II.A. Using a set of inferential operators, the
subject attempts to confirm the conclusion working from the premises, and
accepts the conclusion if this problem-solving effort succeeds. The
process typically used by subjects differs from the task of finding
explicit proofs in that the inferential operators are not expressed
overtly, and of course need not correspond completely to the rules of
formal logic.

3odels of evaluating propositional syllogisms have been formulated by
Osherson (1975), Braine (1978), and Rips (1983). These models are based on
the concept of natural deduction, discussed by Gentzen (1935/1969). A
system of natural deduction is a form of production system. Rules for
making inferences specify conditions in the form of patterns of
propositions, and when a pattern is matched in premises, the inference is
made. the models account for performance by postulating sets of inference
rules assumed to be used implicitly by subjects. Rips also formulated a
specific process of applying the rules and forming representations of the
derivation. An interesting feature of Rips's formulation is the inclusion
of suppositions that provide a backward-chaining component in the search
process. A syllogism is judged valid if the system can generate a
derivation of the conclusion from its inference rules.
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The idea that sentential syllogisms are evaluated by natural deduction
provides an interpretation of many of the kinds of errors that occur in
syllogistic reasoning. Because it is an informal reasoning system, it is
not surprising that it is susceptible to influence by general Knowledge and
affect. One would expect performance to be improved if subjects were
taught a more explicit procedure for verifying the applicability of
inference rules in evaluating syllogisms, and this result was obtained in
the domain of geometry proofs in a study by Greeno and Magone (described in
Greeno, 1983).

'odels of reasoning for categorical syllogisms have been formulated by

Guyote and Sternberg (1981) and by Jonnson-Laird and Steedman (1978).
These models use the idea that the information in premises is represented
in the form of examples; for example, "Some jewels are diamonds" might be
represented as a symbol for a jewel that is a diamond and another symbol
for a jewel that is not a diamond. A representation is formed oased on the
premises, and is used to evaluate the conclusion. Errors occur because the
representations are incomplete; the examples generated by the system often
fail to exhaust the possibilities, leading to incorrect conclusions.

V.B. Linear Syllogisms

In a linear syllogism, premises specify ordered relations between
pairs of objects, and questions are asked about pairs for wnich the order
was not specified. An example (Egan & Grimes-Farrow, 1982) is:

Circle is darker than square.
Square is darker than triangle.
is triangle darker than circle?

(An alternative is to ask "Which is darkest?" or "Which is lightest?")
Problems are presented with relations expressed differently, such as
"Triangle is lighter than square," or "Triangle is not as dark as square,"
with the premise information given in different orders, and with different
questions.

To answer thi question, the information in the premises must be
encoded in some representation that enables the answer to be derived.
Three hypotheses about representation have Deen considered.

According to a spatial hypothesis (DeSoto, London & Handel, 1965,
Huttenlocher, 1968) information in the premises is integrated into an
ordered list, possibly using an image in which symbols are spatially
aligned. A representation for the example would be an ordering with circle
first, square second, and triangle third, perhaps imagined in a vertical
line with the circle at the top. Then a question such as "Is circle darKer
than triangle?" would be answered by comparing the positions of the circle
and the triangle in the ordered representation.

A second hypothesis (Clark, 1969) is that the representation consists
of propositions in which individual objects are associated with values of
attributes. For the example, circle would be associated with a large
degree of darkness, square with a medium degree, and triangle with a small
degree. A question would be answered by retrieving representations of the
objects in the question and comparing the properties associated with them.
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The third hypothesis is that representations of binary relations are
stored in memory. This hypothesis assumes the simplest process of
representation, since information in memory corresponds directly to the
information in the premises. To answer a question, however, a sequence of
propositions has to be retrieved; for example to answer "Is circle darker
than triangle," both "Circle darker than square" and "Square darker than
triangle" have to be retrieved.

The hypothesis that binary relations are represented is ruled out by
data obtained by Potts (1974), who had subjects study paragraphs containing
series with six terms and asked questions involving pairs that varied in
their separation; with the ordering A>B>C>D>E>F, C>D? has separation 0,
B>D? has separation 1, 3>E? has separation 2, and so on. If binary
relations are in memory, questions with greater separation should take
longer, since answers to these questions require more inferential steps.
The finding was the opposite: items with greater separation required less
time to respond. This finding has also been obtained with comparisons
involving general knowledge, such as the relative sizes of animals (Banks,
1977).

The question whether premises are represented by an integrated spatial
array or by propositions associating properties with individual objects has
been harder to resolve. Huttenlocher (1968) provided an argument for the
spatial nypothesis, including the finding that latency is shorter when the
second premise has the third individual as the subject of the sentence
(e.g., A>B, C<B rather than A>B, B>C). The interpretation is that the
subject imagines placement of the new object in a spatial array, and this
is easier if the object is mentioned as the sentence subject than the
sentence object. Clark (1969) argued for a propositional representation,
presenting evidence that performance is influenced by linguistic factors
such as the congruence of questions with premises (e.g., "A>B, which is
greater?" is easier than "B<A, which is greater?").

Sternberg (1980) formulated models that specify stages of processing
based on assumptions of a spatial or a propositional representation of
premises. He also formulated a model that combines the assumptions, with
linguistic factors influencing an initial encoding of premises and
relations among propositions influencing a process of converting the

information into an integrated spatial array. The combined
linguistic-spatial model provided a more accurate account of latency data
than either of the simpler models based on linguistic or spatial factors.

Several investigators have provided evidence that linear syllogisms
are not solved in a single way by all subjects; rather, different
representations are used by different individuals (Mayer, 1979; Sternberg
& Weill, 1980). Egan and Grimes-Farrow's (1982) evidence was particularly
direct. They used retrospective protocols obtained after solutions of
individual problems. The protocols indicated that some subjects used
spa" !al representations consistently, and other subjects sometimes formed
representations with individual objects in the problem associated with
differing quantitative values of attributes. The protocol evidence was
substantiated by analyses showing different influences on subjects'
performance depending on the representations they reported using. The
order in which objects were mentioned was significant for subjects who used
spatial representations, and the linguistic factor of consistency of the
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relational term used was significant for subjects who sometimes used

invidivual object propositions.

V.C. Conclusions

Until quite recently there has been little relation between the
research on reasoning and research on problem solving of the sorts
discussed in the previous sections of this chapter. Sometimes this

separation has been justified on the grounds that syllogistic reasoning is
"deductive" while problem solving is "inductive." We have seen that this
distinction does not hold water. While a syllogism is a deductive
structure, finding valid steps or testing whether proposed steps are valid
is not a deductive process. Indeed, the major process in evaluation of a
propositional or categorical syllogism is an attempt to find a proof of the
conclusion, the process that we discuss in Section II.A as the prototypical
example of goal-based problem solving. For linear syllogism problems, the
major process is an example of inductive problem solving as that concept is
used in Section IV, in which the subject forms an integrated representation
of the premises using the structure of an ordered list induced from the
order relations that the premises state.

From the fact that all reasoning involves problem solving, however, it
does not follow that there is no need for special theory in the domain of
syllogistic reasoning. To understand human reasoning, we must understand
the meanings that people attach to words and the rules of inference that
constitute their systems of "natural logic" as aell as the structure of the
control system that guides their problem solving search. Recent
investigations have progressed significantly on these questions.

1!
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VI. Conclusions

The literature reviewed in this chapter includes analyses of problem
solving in a few dozen tasks. Important general characteristics have
emerged in these analyses. One way to express these characteristics is to
consider the task of analyzing problem solving in a new domain. Analyses
that have been provided give quite strong guidance about the kinds of
processes and knowledge structures that one should look for in an
investigation of problem solving.

First, it is important to investigate the subjects' knowledge and
processes for representing the problem. If the subjects do not have
special training in the problem domain, they must construct a problem space
that includes representations of the problem materials, the goal,
operators, and constraints. If subjects have special training or
experience in the domain, their prior knowledge includes general
characteristics of the problem space, and their representations of
individual problems are based on this general knowledge. Experts are
cognizant of general methods that can be used for solving problems, and
their representations of problems include use of problem information
relevant to the choice of a solution method.

A second major task is to characterize the problem representations
that subjects form in their understanding of the problem. In relatively
unfamiliar domains, problem solving is primarily a process of search, and
the problem representation determines the space of possibilities in which
the search will occur. Some basic features of the problem space depend on
the problem itself, of course. A problem may present constraints mainly on
the operators that are permitted in trying to achieve a goal, or on the
arrangement of materials that is acceptable as a solution, or may present
materials and require induction of a pattern or rule. These alternatives
lead to differences in the problem space: a space of possible sequences of
actions, a space of possible solution arrangements, a space of possible
structures, or some combination of these.

The problem space constructed by an individual subject also is
determined by the method of search that the subject uses, features of the
problem that are used, and general knowledge that is applied. In a problem
of transforming a situation by a sequence of actions, subjects typically

use some form of means-ends analysis. They may distinguish between
features of the situation that are more or less essential for the solution,
and organize their search by a process of planning that focuses on the more
essential features. Searching in a space of possible solution arrangements
typically involves generating partial solutions on a trial basis, and is
influenced by the subjects' knowledge of constraints that can be used to
limit the candidate arrangements that are considered. Solution of
induction problems is similarly influenced by the subjects' knowledge of
general constraints on possible solutions, which may be used in generating
and testing hypotheses or in a process of synthesizing or abstracting
structures from the features of individual objects that are provided.

In problem solving for which subjects have special training or
experience the problem space of operators and constraints is provided by
the subjects' existing knowledge. Knowledge of experts is highly
organized, and includes solution methods and concepts for representing

__________-____
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problems at varying degrees of generality and abstraction. For relatively
simple problems, experts' knowledge often provides a basis for immediate
recognition of solution methods as weil as of detailed features relevant to
the solution. Their knowledge of relations among methods and operators and
of constraints in the domain enables problem-solving performance to occur
in a highly organized planful manner.

While the study of problem solving and reasoning has progressed
rapidly and achieved a substantial level cf knowledge and theory, several
significant questions remain largely unanswered. We will mention four of
these.

First, while performance of experts on relatively simple problems is
beginning to be understood, little is known about their performance on
problems that are difficult and deep. It is possible that on problems for
which an expert's knowledge does not provide a ready method of solution,
the expert resorts to "weak methods" of search and analysis fundamentally
similar to those used by novices. It also is possible that powerful
processes of reasoning in a domain are acquired by experts, and that these
are used in solving problems for which specific solution methods have not
been worked out and stored in memory.

A second question, closely related to the first, involves the general
nature of problem solving in its more powerful and productive forms. 4e
have referred to discussions of productive thinking by Duncker (1935/1945)
and Wertheimer (1945/1959) and have noted progress that has been made on
same of the issues that they raised. They also raised a critical issue
that has not been addressed strongly in recent discussions. This is the
process of constructing more powerful representations of problems by
analysis of problem components. The initial representation of a problem
frequently does not include important relationships that are required for a
meaningful solution, but the problem solver is able to construct a
reformulation that includes its important structural features.

A third question for which there are promising preliminary results but
much more to be done is the question of learning. Analyses of acquisition
require understanding of the skills and knowledge that is acquired, and the
significant accomplishments in characterizing skill and knowledge in

problem solving provide a promising basis for investigation of learning.
Recent proposals regarding acquisition of cognitive skill such as those of
Anderson (1982), Anzai and Simon (1979), Neches (1981) and Neves (1981)
provide significant steps in the analysis of learning processes.

A fourth question involves the theoretical power of general principles
in the analysis of problem solving and reasoning. The analyses that are
reviewed in this chapter provide detailed hypotheses about performance in
specific tasks, and are strongly testable at the level of their assumptions
about specific processes. The assumptions made at a more general level are
more heuristic. They involve concepts and principles that provide
significant guidance in constructing hypotheses about specific cognitive
structures and processes, but they rarely constrain those hypotheses in
wholly specifiable ways. The question whether complex processes of problem
solving and reasoning are constrained by significant underlying formal
principles is an open question. Some investigators (Keil, 1981; VanLehn,
Brown & Greeno, in press) have urged that research should attempt to
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discover general principles with deductive power that would significantly
constrain characteristics of process models. Others (Newell & Simon, 1976)
have noted that there are good reasons for expecting that complex cognition
is constrained by relatively weak structural principles, of the kind that
are characteristic of present theoretical analyses.

A review of any significant body of scientific research can be closed
with the remark that much has been accomplished, and much more remains to
be done. This seems particularly ape for cne psychology of problem solving
and reasoning. The progress that has been made in the 1960s and 1970s in
this domain has been substantial, and concepts and methods are now
available that will enable future investigations to address issues of
further significance.

I
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